
WASD VMS Web Services
- Features and Facilities

November 2018

For version 11.3 release of WASD VMS Web Services.

Abstract

This document describes the more significant features and facilities available with the WASD
Web Services package.

For installation, update and detailed configuration information see ‘‘WASD Web Services - Install
and Config’’

For information on CGI, CGIplus, ISAPI, OSU, etc., scripting, see ‘‘WASD Web Services -
Scripting’’

And for a description of WASD Web document, SSI and directory listing behaviours and options,
‘‘WASD Web Services - Environment’’

It is strongly suggested those using printed versions of this document also access the Web
version. It provides online access to some examples, etc.

Author

Mark G. Daniel

Mark.Daniel@wasd.vsm.com.au

A pox on the houses of all spammers. Make that two poxes.

Online Search
online search

Online PDF

This book is available in PDF for access and subsequent printing by suitable viewers (e.g.
Ghostscript) from the location WASD_ROOT:[DOC.FEATURES]WASD_FEATURES.PDF

Online Demonstrations

Some of the online demonstrations may not work due to the local organisation of the Web
environment differing from WASD where it was originally written.

ii

WASD VMS Web Services

Copyright © 1996-2018 Mark G. Daniel.

This package is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; version 3 of the License,
or any later version.

This package is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

WASD_ROOT:[000000]GNU_GENERAL_PUBLIC_LICENSE.TXT

http://www.gnu.org/licenses/gpl.txt

You should have received a copy of the GNU General Public License along with this package; if
not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

The Apache Group

This product includes software developed by the Apache Group for use in the Apache HTTP
server project (http://www.apache.org/).

Redistribution and use in source and binary forms, with or without
modification, are permitted ...

Clark Cooper, et.al.

This package uses the Expat XML parsing toolkit.

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006 Expat maintainers.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

Bjoern Hoehrmann

This package uses essential algorithm and code from Flexible and Economical UTF-8 Decoder.

iii

Copyright (c) 2008-2009 Bjoern Hoehrmann <bjoern@hoehrmann.de>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

Free Software Foundation

This package contains software made available by the Free Software Foundation under the GNU
General Public License.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

Ohio State University

This package contains software provided with the OSU (DECthreads) HTTP server package,
authored by David Jones:

Copyright 1994,1997 The Ohio State University.
The Ohio State University will not assert copyright with respect
to reproduction, distribution, performance and/or modification
of this program by any person or entity that ensures that all
copies made, controlled or distributed by or for him or it bear
appropriate acknowlegement of the developers of this program.

OpenSSL Project

This product can include software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/).

Redistribution and use in source and binary forms, with or without
modification, are permitted ...

Paul E. Jones

This package uses SHA-1 hash code.

Copyright (C) 1998, 2009
Paul E. Jones <paulej@packetizer.com>

Freeware Public License (FPL)

This software is licensed as "freeware." Permission to distribute
this software in source and binary forms, including incorporation
into other products, is hereby granted without a fee.

iv

RSA Data Security

This software contains code derived in part from RSA Data Security, Inc:

permission granted to make and use derivative works provided that such
works are identified as "derived from the RSA Data Security, Inc.
MD5 Message-Digest Algorithm" in all material mentioning or referencing
the derived work.

Stuart Langridge

SortTable version 2
Stuart Langridge, http://www.kryogenix.org/code/browser/sorttable/

Thanks to many, many people for contributions and suggestions.
Licenced as X11: http://www.kryogenix.org/code/browser/licence.html
This basically means: do what you want with it.

Tatsuhiro Tsujikawa

nghttp2 - HTTP/2 C Library
Tatsuhiro Tsujikawa, https://github.com/tatsuhiro-t

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

VSI OpenVMS is a registered trademark of VMS Software Inc.

OpenVMS , HP TCP/IP Services for OpenVMS , HP C, Alpha , Itanium and VAX
are registered trademarks of Hewlett Packard Corporation

MultiNet and TCPware are registered trademarks of Process Software Corporation

Ghostscript is Copyright (C) Artifex Software, Inc.

v

Contents

Chapter 1 Introduction

Chapter 2 Package Overview

2.1 Server Behaviour . 2–3

2.2 VMS Versions . 2–3

2.3 TCP/IP Packages . 2–3

2.4 International Features . 2–4

Chapter 3 Authentication and Authorization

3.1 Rule Interpretation . 3–2

3.2 Authentication Policy . 3–2

3.3 Permissions, Path and User . 3–4

3.4 Authorization Configuration File . 3–5

3.5 Authentication Sources . 3–8

3.6 Realm, Full-Access, Read-Only . 3–14

3.7 Virtual Servers . 3–15

3.8 Authorization Configuration Examples . 3–15

3.8.1 KISS . 3–17

3.9 Authorization Cache . 3–18

3.10 SYSUAF-Authenticated Users . 3–19

3.10.1 ACME . 3–19

3.10.2 Logon Type . 3–20

3.10.3 Rights Identifiers . 3–20

3.10.4 WASD ‘‘Hard-Wired’’ Identifiers . 3–21

3.10.5 VMS Account Proxying . 3–21

3.10.6 Nil-Access VMS Accounts . 3–23

3.10.7 SYSUAF and SSL . 3–23

iii

3.10.8 SYSUAF Security Profile . 3–24

3.10.9 SYSUAF Profile For Full Site Access . 3–25

3.11 Token Authentication . 3–25

3.12 Skeleton-Key Authentication . 3–28

3.13 Controlling Server Write Access . 3–29

3.14 Securing All Requests . 3–29

3.15 User Password Modification . 3–30

3.16 Cancelling Authorization . 3–32

Chapter 4 Transport Layer Security

4.1 Let’s Encrypt . 4–2

4.2 SSL Functionality Sources . 4–3

4.3 WASD SSL Quick-Start . 4–4

4.4 OPENSSL.EXE Application . 4–5

4.5 SSL Configuration . 4–5

4.5.1 WASD_CONFIG_SERVICE . 4–6

4.5.2 SSL Versions . 4–6

4.5.3 SSL Ciphers . 4–6

4.5.4 (Open)SSL Options . 4–7

4.5.5 Forward Secrecy . 4–7

4.5.6 Session Resumption . 4–9

4.5.7 Strict Transport Security . 4–10

4.5.8 SSL Server Certificate . 4–10

4.5.9 SSL Private Key . 4–10

4.5.10 SSL Virtual Services . 4–11

4.5.11 SSL Access Control . 4–11

4.5.12 Authorization Using X.509 Certification . 4–11

4.5.13 X.509 Certificate Renegotiation . 4–12

4.5.14 Features . 4–12

4.5.15 Subject Alternative Name and Other Extensions . 4–13

4.5.16 X509 Configuration . 4–14

4.5.17 Certificate Authority Verification File . 4–18

4.5.18 X.509 Authorization CGI Variables . 4–19

4.6 Certificate Management . 4–20

4.6.1 Server Certificate . 4–21

4.6.2 Certificate Signing Request . 4–22

4.7 SSL CGI Variables . 4–25

4.8 SSL Service Evaluation . 4–27

4.9 SSL References . 4–31

iv

Chapter 5 HTTP/2

5.1 WASD HTTP/2 . 5–2

5.2 HTTP/2 and Performance . 5–3

5.3 HTTP/2 Configuration . 5–4

5.3.1 Global Configuration . 5–6

5.3.2 Service Configuration . 5–6

5.3.3 Mapping Set Rules . 5–7

5.4 HTTP/2 Detection . 5–7

5.5 HTTP/2 References . 5–8

Chapter 6 WebDAV

6.1 HTTP Methods Supported . 6–3

6.1.1 COPY Restrictions . 6–4

6.1.2 DELETE Restrictions . 6–4

6.1.3 MOVE Restrictions . 6–4

6.1.4 If: Restrictions . 6–5

6.2 WebDAV Configuration . 6–5

6.2.1 WebDAV Set Rules . 6–5

6.2.2 File Naming . 6–6

6.2.3 File-system Access . 6–8

6.2.4 File-system Authorisation . 6–8

6.2.5 Concurrent Authorisation . 6–9

6.2.6 Real-World Example . 6–9

6.3 WebDAV Metadata . 6–10

6.4 WebDAV Locking . 6–13

6.5 Some Wrinkles . 6–15

6.5.1 OS X Finder . 6–15

6.5.2 Gnome/gvfs/Nautilus . 6–15

6.5.3 Dreamweaver . 6–15

6.6 Microsoft Miscellanea . 6–15

6.6.1 Mapping . 6–16

6.6.2 FrontPage Extensions . 6–16

6.6.3 Avoiding Microsoft Property Clutter . 6–16

6.6.4 OPTIONS header "MS-Author-Via: DAV" . 6–16

6.6.5 Repairing broken XP Web Folders . 6–17

6.6.6 Adding a port number to the webfolder-address . 6–17

6.6.7 Adding a number-sign ("#") to the webfolder-address 6–17

6.6.8 Force Windows XP to use Basic Authentication . 6–17

6.6.9 Microsoft XP Explorer BASIC Authentication . 6–17

6.6.10 Microsoft Windows 7 BASIC Authentication . 6–18

v

6.6.11 Error 0x800700DF: The file size exceeds the limit allowed and cannot be
saved . 6–18

Chapter 7 Proxy Services

7.1 HTTP Proxy Serving . 7–2

7.1.1 Enabling A Proxy Service . 7–3

7.1.2 Proxy Affinity . 7–3

7.1.3 Proxy Bind . 7–4

7.1.4 Proxy Chaining . 7–4

7.1.5 Controlling Proxy Serving . 7–5

7.2 Caching . 7–8

7.2.1 Cache Device . 7–9

7.2.2 Enabling Caching . 7–10

7.2.3 Cache Management . 7–11

7.2.4 Cache Invalidation . 7–13

7.2.5 Cache Retention . 7–13

7.2.6 Reporting and Maintenance . 7–14

7.2.7 PCACHE Utility . 7–14

7.3 CONNECT Serving . 7–16

7.3.1 Enabling CONNECT Serving . 7–16

7.3.2 Controlling CONNECT Serving . 7–17

7.4 FTP Proxy Serving . 7–17

7.4.1 FTP Query String Keywords . 7–18

7.4.2 ‘‘login’’ Keyword . 7–19

7.5 Gatewaying Using Proxy . 7–19

7.5.1 Reverse Proxy . 7–20

7.5.2 One-Shot Proxy . 7–21

7.5.3 DNS Wildcard Proxy . 7–22

7.5.4 Originating SSL . 7–23

7.6 Tunneling Using Proxy . 7–23

7.6.1 [ServiceProxyTunnel] CONNECT . 7–24

7.6.2 [ServiceProxyTunnel] RAW . 7–24

7.6.3 [ServiceProxyTunnel] FIREWALL . 7–25

7.6.4 Encrypted Tunnel . 7–26

7.6.5 Encrypted Tunnel With Authentication . 7–27

7.6.6 Shared SSH Tunnel . 7–28

7.6.7 Complex Private Tunneling . 7–29

7.6.8 Tunnelling Source . 7–33

7.7 Browser Proxy Configuration . 7–34

7.7.1 Manual . 7–34

7.7.2 Automatic . 7–35

vi

Chapter 8 Instances and Environments

8.1 Server Instances . 8–1

8.1.1 VMS Clustering Comparison . 8–1

8.1.2 Considerations . 8–2

8.1.3 Configuration . 8–3

8.1.4 Status . 8–3

8.2 Server Environments . 8–5

8.2.1 Ad Hoc Server Wrapper . 8–6

8.2.2 Formal Environments . 8–6

8.2.3 Considerations . 8–7

Chapter 9 Server Administration

9.1 Access Before Configuration . 9–1

9.2 Access Configuration . 9–2

9.3 Server Instances . 9–3

9.4 HTTPd Server Reports . 9–4

9.5 HTTPd Server Revise . 9–8

9.6 HTTPd Server Action . 9–10

9.7 HTTPd Command Line . 9–11

9.7.1 Accounting . 9–12

9.7.2 Alignment Faults . 9–12

9.7.3 Authentication . 9–12

9.7.4 Cache . 9–13

9.7.5 Configuration Check . 9–13

9.7.6 DCL/Scripting Processes . 9–13

9.7.7 DECnet Scripting Connections . 9–14

9.7.8 Hhelppp! . 9–14

9.7.9 HTTP/2 Connection . 9–14

9.7.10 Instances . 9–14

9.7.11 Instance Status . 9–15

9.7.12 Logging . 9–15

9.7.13 Mapping . 9–15

9.7.14 Network Connection . 9–16

9.7.15 Shutdown and Restart . 9–16

9.7.16 Secure Sockets Layer . 9–17

9.7.17 Throttle . 9–17

9.7.18 WebSocket . 9–17

vii

Chapter 10 WATCH Facility

10.1 Server Instances . 10–2

10.2 Event Categories . 10–2

10.3 Request Filtering . 10–5

10.4 Report Format . 10–7

10.5 Usage Suggestions . 10–9

10.6 Command-Line Use . 10–10

Chapter 11 Server Performance

11.1 Simple File Request Turn-Around . 11–2

11.2 Scripting . 11–4

11.3 SSL . 11–6

11.4 Suggestions . 11–7

Chapter 12 HTTPd Web Update

Chapter 13 Utilities and Facilities

13.1 Echo Facility . 13–1

13.2 Hiss Facility . 13–2

13.3 Stream Facility . 13–2

13.4 Where Facility . 13–3

13.5 Xray Facility . 13–3

13.6 ApacheBench . 13–3

13.7 CALogs . 13–4

13.8 HTAdmin . 13–5

13.9 HTTPd Monitor . 13–7

13.10 MD5digest . 13–9

13.11 QDLogStats . 13–10

13.12 SECHAN Utility . 13–12

13.13 StreamLF Utility . 13–12

13.14 WASDbench :^) . 13–12

13.15 WOTSUP Utility . 13–13

viii

Chapter 1

Introduction

With the installation, update and detailed configuration of the WASD Web Services package
provided in ‘‘WASD Web Services - Install and Config’’ why have an introduction in this
subsequent document? After getting the basics up and running (often the first thing we want
to do) it’s time to stop and consider the tool and what we’re trying to accomplish with it. So
this section provides an overview of the package’s design philosophy, history and significant
features and capabilities by topic.

The document assumes a basic understanding of Web technologies and uses terms without
explaining them (e.g. HTTP, HTML, URL, CGI, SSI, etc.) The reader is refered to documents
specifically on these topics.

It is strongly suggested those using printed versions of this document also access the Web
version. It provides online demonstrations of some concepts.

Objectives

WASD Web Services originated from a 1993 decision by Wide Area Surveillance Division
(WASD) management (then High Frequency Radar Division, HFRD) to make as much
information as possible, both administrative and research, available online to a burgeoning
personal desktop workstation and PC environment (to use the current term . . . an intranet)
using the then emerging Web technologies.

It then became the objective of this author to make all of our systems’ VMS-related resources
available via HTTP and HTML, regardless of the underlying data or storage format. An
examination of the WASD package will show that this objective is substantially achieved.

Reasons For Yet Another Web Package

Reasons for developing (remember; back in 1994!) a local HTTP server were few but
compelling:

• The WASD Web implementation began mid-1994.

• It was prefered to support this environment on a VMS platform; at the time the most
widely used and accessible environment within WASD.

Introduction 1–1

• At that time servers (and even then there were quite a few variations) were largely
Unix based, although it was being supported (to a greater or lesses extent) across a wide
range of platforms. Ports to VMS, if they existed, were often in-progress or half-baked,
employing Unixisms that don’t translate elegantly to the VMS environment.

• The VMS version of the CERN server (3.0-6) was evaluated during mid-1994:

— It was (still is) not multi-threaded under VMS (i.e. cannot support concurrent clients).
For example, a lengthy search may delay other clients for unacceptable periods.

— The performance was good with document transfers, but became poor when running
a script.

— It is acknowleged in the release notes that it cannot handle a client cancelling a data
transfer (a not-uncommon action). This was confirmed experimentally.

• An early version of the OSU server was evaluated via documentation mid-1994. The
author considered that the DECthreads of the time to have limitations (including frequent,
show-stopping bugs) and OSU had a number of implementation idiosyncracies (e.g.
DECnet based scripting).

• HTTP, in the then standard implementation (HTTP/1.0, RFC1945), was relatively simple
to implement to the level required to support intra-Divisional requirements.

• Since that time . . .

— As of December 1995 the server has worked extremely well and has a number of
facilities tailored for the VMS environment. It can continue to be utilized until there
are overwhelming reasons for implementing something else.

— June 1997 the server and associated software continues to evolve and provide a
stable and effective VMS Web environment, even with the advent of a small number
of commercial VMS Web products.

— October 1999 the package is beginning to mature as an HTTP/1.0 solution, providing
not only a fast and stable server but an increasingly extensive collection of applications
and tools.

— July 2002 it continues to be refined and extended. A greater emphasis on ‘‘commer-
cial’’ functionality has occured over the past couple of years.

— December 2004 it now complies with the HTTP/1.1 specification (RFC2616) and
provides a very respectable range of functionality and the fastest and most efficient
serving environment for VMS.

— A decade on (2014) it continues to be adopted by sites wanting fast, efficient, capable
and often philosophically VMS infrastructure. WASD continues to be enhanced and
bug-fixed two decades after its initial, tentative steps into the World-Wide information
Web.

— May 2016 brings HTTP/2 (RFC 7540, RFC 7541) to WASD. A replacement for how
HTTP is expressed ‘‘on the wire’’, it is not a ground-up rewrite of the protocol; HTTP
methods, status codes and semantics are the same. The focus of the protocol is on
performance; specifically, end-user perceived latency, network and server resource
usage.

1–2 Introduction

Chapter 2

Package Overview

The most fundamental component of the WASD VMS Web Services environment is the HTTP
server (HyperText Transport Protocol Daemon, or HTTPd). WASD has a single-process, multi-
threaded, asynchronous I/O design.

The following bullet-points summarise the features and facilities, many of which are described
in significant detail in following chapters.

General

• concurrent, multi-threaded client support

• HTTP/2 compliant (RFC 7540, RFC 7541)

• HTTP/1.1 compliant (RFC 2616, RFC 7230 and family)

• HTTP/1.0 compliant (RFC 1954)

• WebDAV 1,2 support (RFC 4918)

• Cross-Origin Resource Sharing (CORS)

• virtual services (servers)

• IPv4 and IPv6 support (requires underlying TCP/IP support)

• requests above a configurable limit can be queued (‘‘throttling’’)

• enhanced privacy using Secure Sockets Layer (SSL) technology, including OpenSSL
Toolkit, WASD OpenSSL, and HP SSL (Secure Sockets Layer) for OpenVMS Alpha,
Itanium and (from late 2003) VAX product

• serves ODS-2 and ODS-5 (EFS) volumes, as well as file names encoded using the
PATHWORKS 4/5, Advanced Server (PATHWORKS 6) and SRI (MultiNet NFS, etc.)
schemas

• versatile directory listing (generic and VMS-style)

• Server-Side Includes (SSI HTML pre-processing)

Package Overview 2–1

• configurable cache, with time-based and forced revalidation (reload)

• byte-range support with 206 partial responses (useful for PDF and restarting file download
by modern browsers)

• proxy serving, with local file-system caching, plus the CONNECT method (also allowing
a number of esoteric SSL tunnelling configurations), along with FTP proxy

• gatewaying between Web protocols (HTTP-to-SSL, SSL-to-HTTP, HTTP-to-FTP)

• gatewaying between IP protocols (IPv4-to-IPv6, IPv6-to-IPv4)

Scripting

• CGI 1.1 compliant scripting (RFC 3875)

• non-server and user account scripting

• ‘‘CGIplus’’ scripting (offering reduced latency, increased throughput and reduced system
impact)

• ‘‘Persistent’’ scripting, Run-Time Environments (RTEs) that provide for simple persistent
scripting

• WebSocket scripting environment; a capability introduced with HTML5, providing an
asynchronous, bidirectional, full-duplex connection.

• ‘‘RawSocket’’ scripting environment; providing an protocol-agnostic asynchronous, bidi-
rectional, full-duplex connection.

• ‘‘ISAPI’’ extensions/scripting (also offering reduced latency, increased throughput and
reduced system impact)

• DECnet-based CGI scripting (with connection reuse)

• OSU (DECthreads server) scripting emulation, with connection reuse (as per OSU 3.3a),
allowing many OSU scripts to be employed unmodified

• script processor (e.g. PERL, PHP, Python) configurable on file type (suffix)

• configurable, automatic, MIME content-type initiated scripting (‘‘presentation’’ scripting)

Access Control

• host-level, on per-host or per-domain

• ‘‘Basic’’ and ‘‘Digest’’ user authentication and path/group-based authorization

• WASD-specific user databases

• SYSUAF-authentication and VMS user security profile based file access control

• ACME service authentication (on applicable platforms)

• X.509 client certificate authentication (for SSL transactions)

• RFC 1413 (ident daemon) ‘‘authentication’’

• Example LDAP authenticators

2–2 Package Overview

Administration

• multiple instances (server processes) executing on the one system allow continuous
availability via rolling restarts and ‘‘fail-through’’ processing

• ‘‘one-button’’ control of multiple instances on both single systems and across clusters

• online server configuration, including reports on requests, loaded configuration, mapping
rules, authorization information and graphical activity displays

• online, live server processing event report (WATCH)

• Web-standard, ‘‘common’’ and ‘‘combined’’ access log formats (allowing processing by most
log-analysis tools), along with a user-definition capability allowing custom log formats

• logging periods, where log files automatically change on a daily, weekly or monthly basis
(keeps log files ordered and at a managable size)

• customizable message database (capable of supporting non-English and concurrent, mul-
tiple languages)

2.1 Server Behaviour
The technical aspects of server design and behaviour are described in ‘‘WASD_ROOT:[SRC.HTTPD]READMORE.TXT’

2.2 VMS Versions
The WASD server is supported on any VMS version from V7.0 upwards, on Alpha, Itanium
and VAX architectures. The current version (as of late 2014), V8.4 Alpha and Itanium, as is
commonly the case on VMS platforms, required nothing more than relinking. Obviously no
guarantees can be made for yet-to-be-released versions but at a worst-case these should only
require the same.

Up until v10.1 WASD was supported on VMS V6.0 and later. Eventually it had to be dragged
kicking and screaming into the mid-1990s!

The WASD distribution and package organisation fully supports mixed-architecture clusters
(Alpha, Itanium and/or VAX in the one cluster) as one integrated installation.

2.3 TCP/IP Packages
The WASD server uses the Compaq TCP/IP Services (UCX) BG $QIO interface. The following
packages support this interface and may be used.

• TCP/IP Services for OpenVMS (Hewlett Packard Corporation), any version

• Digital TCP/IP Services for OpenVMS (aka UCX), any version

• MultiNet for OpenVMS (Process Software Corporation), any version

To deploy IPv6 services this package must support IPv6.

Package Overview 2–3

2.4 International Features
WASD provides a number of features that assist in the support of non-English and multi-
language sites. These ‘‘international’’ features only apply to the server, not necessarily to any
scripts!

• Language Variants

A directory may contain language-specific variants of a basic document. When requesting
the basic document name these variants are automatically and transparently provided
as the response if one matches preferences expresses in the request’s ‘‘Accept-Language:’’
request header field. Both text and non-text documents (e.g. images) may be provided
using this mechanism.

Configuration information is provided in ‘‘WASD Web Services - Install and Config’’ .

• Character Sets

Generally the default character set for documents on the Web is ISO-8859-1 (Latin-1).
The server allows the specification of any character set as a default for text document
responses (plain and HTML). In addition, text document file types may be modified or
additional ones specified that have a different character set associated with that type.
Furthermore, specific character sets may be associated with mapping paths. A site can
therefore relatively easily support multiple character set document resources.

In addition the server may be configured to dynamically convert one character set to
another during request processing. This is supported using the VMS standard NCS
character set conversion library.

For further information see [CharsetDefault], [CharsetConvert] and [AddType] in ‘‘WASD
Web Services - Install and Config’’ .

• Server Messages

The server uses an administrator-customizable database of messages that can contain
multiple language instances of some or all messages, using the Latin-1 character set
(ISO8859-1). Although the base English messages can be completely changed and/or
translated to provide any message text required or desired, a more convenient approach
is to supplement this base set with a language-specific one.

One language is designated the prefered language. This would most commonly be the
language appropriate to the geographical location and/or clientele of the server. Another
language is designated the base language. This must have a complete set of messages
and is a fall-back for any messages not configured for the additional language. Of course
this base language would most commonly be the original English version.

More than just two languages can be supported. If the browser has prefered languages

set the server will attempt to match a message with a language in this preference list.
If not, then the server-prefered and then the base language message would be issued, in
that order. In this way it would be possible to simultaneously provide for English, French,
German and Swedish audiences, just for example.

For message configuration information see ‘‘WASD Web Services - Install and Config’’ .

• Server Dates

2–4 Package Overview

Dates appearing in server-generated, non-administrative content (e.g. directory listings,
not META-tags, which use Web-standard time formats) will use the natural language
specified by any SYS$LANGUAGE environment in use on the system or specifically
created for the server.

• Virtual Services

Virtual-server-associated mapping, authorization and character-sets allow for easy multi-
ple language and environment sites. Further per-request tailoring may be deployed using
conditional rule mapping described below. Single server can support multi-homed (host
name) and multiple port services.

For virtual services information see ‘‘WASD Web Services - Install and Config’’ .

• Conditional Rule Mapping

Mapping rules map requested URL paths to physical or other paths (see ‘‘WASD Web
Services - Install and Config’’). Conditional rules are only applied if the request matches
criteria such as prefered language, host address (hence geographical location to a certain
extent), etc. This allows requests for generic documents (e.g. home pages) to be mapped
to language versions appropriate to the above criteria.

For conditional mapping information see ‘‘WASD Web Services - Install and Config’’ .

Package Overview 2–5

Chapter 3

Authentication and Authorization

Authentication is the verification of a user’s identity, usually through username/password
credentials. Authorization is allowing a certain action to be applied to a particular path
based on authentication of the originator.

Generally, authorization is a two step process. First authentication, using a user-
name/password database. Second authorization, determining what the username is allowed
to do for this transaction.

Basic authorization was discussed in ‘‘WASD Web Services - Install and Config’’). This section
discusses all the aspects of WASD authentication and authorization.

Overview

By default, the logical name WASD_CONFIG_AUTH locates a common authorization rule
file. Simple editing of the file and reloading into the running server changes the processing
rules.

Server authorization is performed using a configuration file, authentication source, and op-
tional full-access and read-only authorization grouping sources, and is based on per-path
directives. There is no user-configured authorization necessary, or possible! In the configu-
ration file paths are associated with the authentication and authorization environments, and
so become subject to the HTTPd authorization mechanism. Reiterating . . . WASD HTTPd
authorization administration involves those two aspects, setting authorization against paths
and administering the authentication and authorization sources.

Authorization is applied to the request path (i.e. the path in the URL used by the
client). Sometimes it is possible to access the same resource using different paths.
Where this can occur care must be exercised to authorize all possible paths.

Where a request will result in script activation, authorization is performed on both
script and path components. First script access is checked for any authorization, then
the path component is independently authorized. Either may result in an authorization
challenge/failure. This behaviour can be disabled using a path SETting rule, see ‘‘WASD Web
Services - Install and Config’’).

Authentication and Authorization 3–1

The authentication source name is refered to as the realm, and refers to a collection of
usernames and passwords. It can be the system’s SYSUAF database.

The authorization source is refered to as the group, and commonly refers to a collection of
usernames and associated permissions.

3.1 Rule Interpretation
The configuration file rules are scanned from first towards last, until a matching rule is
encountered (or end-of-file). Generally a rule has a trailing wildcard to indicate that all
sub-paths are subject to the same authorization requirements.

String Matching

Rule matching is string pattern matching, comparing the request specified path, and option-
ally other components of the request when using configuration conditionals (see ‘‘WASD Web
Services - Install and Config’’), to a series of patterns, until one of the patterns matches, at
which stage the authorization characteristics are applied to the request and authentication
processing is undertaken. If a matching pattern (rule) is not found the path is considered not
to be subject to authorization. Both wildcard and regular expression based pattern matching
is available (see ‘‘WASD Web Services - Install and Config’’).

3.2 Authentication Policy
A policy regarding when and how authorization can be used may be established on a per-server
basis. This can restrict authentication challenges to ‘‘https:’’ (SSL) requests (Chapter 4),
thereby ensuring that the authorization environment is not compromised by use in non-
encrypted transactions. Two server qualifiers provide this.

• /AUTHORIZE=

• ALL restricts all requests to authorized paths. If a path does not have authorization
configured against it it is automatically denied access. This is an effective method of
preventing inadvertant access to areas in a site (Section 3.14).

• SSL restricts all authentication/authorization transactions to the SSL environment.

• (SSL,ALL) combines the above two.

• /SYSUAF=

• Used without any keywords, this qualifier allows all current (non-expired, non-
disusered, etc.), non-privileged accounts to be used for authentication purposes.

• ID restricts SYSUAF authenticated account to those possessing a specific VMS
resource identifier (Section 3.10.3).

• PROXY allows non-SYSUAF to SYSUAF username proxying (Section 3.10.5).

• RELAXED allows any current account to be authorized via the SYSUAF. This is not
recommended, use rights identifiers to allow some discrimination to be exercised.

• SSL restricts only SYSUAF authenticated transactions to the SSL environment.

3–2 Authentication and Authorization

• VMS allows a combination of all current (non-expired, non-disusered, etc.), non-
privileged accounts to be used for authentication purposes (the /SYSUAF without
keywords behaviour), with the behaviours provided by the ID keyword.

• WASD enables the deprecated, "hard-wired" WASD identifier environment available
to this server. See Section 3.10.4.

• (VMS,ID,SSL) would allow these multiple keywords to be applied, etc.

Note also that individual paths may be restricted to SSL requests using either the mapping
conditional rule configuration or the authorization configuration files. See ‘‘WASD Web
Services - Install and Config’’ and Access Restriction Keywords.

In addition, the following configuration parameters have a direct role in an established
authorization policy.

• [AuthFailureLimit] [AuthFailurePeriod] [AuthFailureTimeout] provide a similar
break-in detection and evasion as with VMS. These three directives parallel the func-
tions of SYSGEN parameters LGI_BRK_LIM, LGI_BRK_TMO, LGI_HID_TIM. A single
authentication failure marks the particular username in the particular realm as suspect.
Repeated failures up to [AuthFailureLimit] attempts within the [AuthFailurePeriod] pe-
riod puts it into break-in evasion mode after which the period [AuthFailureTimeout] must
expire before further attempts have authentication performed and so have any chance to
succeed. (This is a change in behaviour to versions earlier than 8.3.) If any of the above
three parameters are not specified they default to the corresponding SYSGEN parameter.

• [AuthRevalidateLoginCookie] When user revalidation is in effect (see immediately
below), after having previously closed the browser initial authentication of a resource is
immediately followed by another if a cached entry on the server indicated revalidation was
required. This prevents this second request. Requires that browser cookies be enabled.

• [AuthRevalidateUserMinutes] sets the number of minutes between successive au-
thentication attempts before the user is forced to reenter the authentication data (via a
browser dialog). Zero disables this function. When enabling this feature is is inevitable
that [AuthRevalidateLoginCookie] will need to be enabled as well (described immediately
above). This is used to suppress an unavoidable second username/password prompt from
the browser.

Authentication Cache and Revalidation
User revalidation relies on an entry being maintained in the authentication cache.
Each time the entry is flushed, for whatever reason (cache congestion, command-
line purge, server restart, etc.), the user will be prompted for credentials. It may
be necessary to increase the size of the cache by adjusting [AuthCacheEntriesMax]
when this facility is enabled.

Authentication and Authorization 3–3

Authentication Failures

Details of authentication failures are logged to the server process log.

• %HTTPD-W-AUTHFAIL indicates a failure to authenticate (incorrect username/password).
The number of failures, the realm name, the user name and the originating host are pro-
vided. Isolated instances of this are only of moderate interest. Consecutive instances may
indicate a user thrashing about for the correct password, but they usually give up before
a dozen attempts.

• %HTTPD-I-AUTHFAILOK advises that a previous failure to authenticate has now
successfully done so. This is essentially informational.

• %HTTPD-W-AUTHFAILIM indicates the number of failures have exceeded the [Auth-
FailureLimit], after which automatic refusal begins. This message should be of concern
and the circumstances investigated, especially if the number of attempts becomes exces-
sive.

Failures may also be directed to the OPCOM facility (see ‘‘WASD Web Services - Install and
Config’’).

3.3 Permissions, Path and User
Both paths and usernames have permissions associated with them. A path may be
specified as read-only, read and write, write-only (yes, I’m sure someone will want this!), or
none (permission to do nothing). A username may be specified as read capable, read and write
capable, or only write capable. For each transaction these two are combined to determine
the maximum level of access allowed. The allowed action is the logical AND of the path and
username permissions.

The permissions may be described using the HTTP method names, or using the more concise
abbreviations R, W, and R+W.

HTTP Methods

Path/User DELETE GET HEAD POST PROPFINDPUT

Other
Web-
DAV

READ or R no yes yes no yes no no

WRITE or W yes no no yes no yes yes

R+W yes yes yes yes yes yes yes

NONE no no no no no no no

DELETE yes yes no no no no no

GET no yes no no no no no

HEAD no no yes no no no no

3–4 Authentication and Authorization

Path/User DELETE GET HEAD POST PROPFINDPUT

Other
Web-
DAV

POST no no no yes no no no

PROPFIND no no no no yes no no

PUT no yes no no no yes no

Other WebDAV no no no no no no yes

3.4 Authorization Configuration File
Requiring a particular path to be authorized in the HTTP transaction is accomplished by
applying authorization requirements against that path in a configuration file. This is an
activity distinct from setting up and maintaining any authentication/authorization databases
required for the environment.

By default, the system-table logical name WASD_CONFIG_AUTH locates a common autho-
rization configuration file, unless an individual rule file is specified using a job-table logical
name. Simple editing of the file changes the configuration. Comment lines may be included
by prefixing them with the hash ‘‘#’’ character, and lines continued by placing the backslash
character ‘‘\ ’’ as the last character on a line.

The [IncludeFile] is a directive common to all WASD configuration, allowing a separate file
to be included as a part of the current configuration. See (see ‘‘WASD Web Services - Install
and Config’’).

Configuration directives begin either with a ‘‘[realm]’’, ‘‘[realm;group]’’ or ‘‘[realm;group-
r+w;group-r]’’ specification, with the forward-slash of a path specification, or with a ‘‘[Auth-
Proxy]’’ or ‘‘[AuthProxyFile]’’ introducing a proxy mapping. Following the path specification
are HTTP method keywords controlling group and world permissions to the path, and any
access-restricting request scheme (‘‘https:’’) and/or host address(es) and/or username(s).

• REALM

Square brackets are used to enclose a [realm;group;group] specification, introducing a
new authentication grouping. Within these brackets is specified the realm name (au-
thentication source), and then optional group (authorization source) names separated by
semi-colons. All path specifications following this are authenticated against the speci-
fied realm database, and permissions obtained from the group ‘‘[realm;group]’’ database
(or authentication database if group not specified), until the next [realm;group;group]
specification.

The following shows the format of an authentication source (realm) only directive.

[authentication-source]

This one, the format of a directive using both authentication and authorization sources
(both realm and group).

[authentication-source ; authorization-source]

Authentication and Authorization 3–5

The third variation, using an authentication, full-access (read and write) and read-only
authorization sources (realm and two grouping).

[authentication-source ; full-access-source ; read-only-source]

The authentication source may also be given a description. This is the text the browser
dialog presents during password prompting. See Realm Description in Section 3.5.

• PATH

Paths are usually specified terminated with an asterisk wildcard. This implies that any
directory tree below this is included in the access control. Wildcards may be used to match
any portion of the specified path, or not at all. Following the path specification are control
keywords representing the HTTP methods or permissions that can be applied against the
path, and optional access-restricting list of host address(es) and/or username(s), separated
using commas. Access control is against either or both the group and the world. The
group access is specified first followed by a semi-colon separated world specification. The
following show the format of the path directive, see the examples below to further clarify
the format.

/root/path/ group-access-list,group-permissions ; \
world-access-list,world-permissions

• PROXY

The [AuthProxy] and [AuthProxyFile] directives introduces one or more SYSUAF proxy
mappings (Section 3.10.5).

The same path cannot be specified against two different realms for the same virtual
service. The reason lies in the HTTP authentication schema, which allows for only one
realm in an authentication dialog. How would the server decide which realm to use in
the authentication challenge? Of course, different parts of a given tree may have different
authorizations, however any tree ending in an asterisk results in the entire sub-tree being
controlled by the specified authorization environment, unless a separate specification exists
for some inferior portion of the tree.

There is a thirty-one character limit on authentication source names.

Reserved Names

The following realm names are reserved and have special functionality.

• EXTERNAL - Any authentication and authorization will be done in some way by an
external CGI script. None is attempted by the server. The server does pre-processs the
supplied "Authorization:" field however and ensures that any request against a path with
this realm supplies authorization credentials before any further request processing (script
activation) occurs.

• NONE - This refers to any request, is not authenticated in a any way, and just marks
the path as having been authorized for access (Section 3.14).

• OPAQUE - Allows a script generating its own challenge/response and doing all its own
"Authorization:" field processing (a little like EXTERNAL but the server does absolutely
nothing).

3–6 Authentication and Authorization

• PROMISCUOUS - This realm is only available while the /PROMISCUOUS qualifier is
in use (Chapter 9).

• RFC1413 - This IETF document describes an identification protocol that can be used as
a form of authentication within this realm.

• TOKEN - A token is a short-lived, cookie delivered, representation of authentication
established in another context.

• WORLD - This refers to any request and is not authenticated in any way, only the
permissions associated with the path are applied to the request. The reserved username
‘‘WORLD’’ becomes the authenticated username.

• VMS - Use the server system’s SYSUAF database to authenticate the username. For
‘‘http:’’ requests the username/password pairs are transmitted encoded but not encrypted,
this is not recommended. For ‘‘https:’’ requests, using the implicit security offered by
SSL (Chapter 4) the use of SYSUAF authentication is considered viable.

By default accounts with SYSPRV authorized are always rejected to discourage the use
of potentially significant usernames (e.g. SYSTEM). Accounts that are disusered, have
passwords that have expired, or that are captive or restricted are also automatically
rejected.

The authentication source may be disguised by giving it a specific description. This will
the text the browser dialog presents during password prompting. See Realm Description
in Section 3.5.

See Section 3.10 for further information on these topics.

• X509 - Uses X.509 v3 certificates (browser client certificates) to establish identity (au-
thentication) and based on that identity control access to server resources (authorization).
This is only available for SSL transactions. See Chapter 4 for further information on SSL,
and Section 4.5.12 on X509 realm authorization.

Reserved Username

The following username is reserved.

• WORLD - If a path is authorized using the WORLD realm the pseudo-authenticated
username becomes ‘‘WORLD’’. Any log will reflect this username and scripts will access
a WWW_REMOTE_USER containing this value. Although not forbidden, it is not
recommended this string be used as a username in other realms.

Access Restriction Keywords

If a host name, protocol identifier or username is included in the path configuration directive it
acts to further limit access to matching clients (path and username permissions still apply).
If more than one are included a request must match each. If multiple host names and/or
usernames are included the client must match at least one of each. Host and username
strings may contains the asterisk wildcard, matching one or more consecutive characters.
This is most useful when restricting access to all hosts within a given domain, etc. In addition
a VMS security profile may be associated with the request.

Authentication and Authorization 3–7

• Host Names - may be specified as either alphabetic (if DNS name resolution is enabled,
see [DNSlookup] configuration directive) or literal addresses. When a host restriction
occurs there is never an attempt to authenticate any associated username. Hence
applying host restrictions very effectively prevents an attack from outside the allowed
addresses. The reserved word #localhost refers to the host name the server is executing
on.

• Network Mask - The mask is a dotted-decimal network address, a slash, then a dotted-
decimal mask or VLSM (variable-length subnet mask). A network mask operates by
bitwise-ANDing the client host address with the mask, bitwise-ANDing the network
address supplied with the mask, then comparing the two results for equality.

• Request Scheme - (protocol) either ‘‘http:’’ or secured via ‘‘https:’’ (SSL)

• User Names - are indicated by a leading tilde, the ‘‘~’’ character (similar or username
URL syntax).

• Profile - a SYSUAF-authenticated username can have its VMS security profile associated
with the request. When applied to a path this profile is used to determine access to the
file system. The WASD_CONFIG_AUTH configuration file can have the keyword ‘‘profile’’
added to the restriction list (Section 3.10.8). In a manner-of-speaking this keyword lifts
a restriction.

For example

/web/secret/* *.three.stooges,~Moe,~Larry,~Curly,read

restricts read access to Curly, Larry and Moe accessing from within the three.stooges network,
while

/web/secret/* https:,*.three.stooges,~Moe,~Larry,~Curly,read

applies the further restriction of access via ‘‘https:’’ (SSL) only.

These examples show the use of a network mask to restrict based on the source network of
the client. The first, four octets supplied as a mask. The second a VLSM used to specify the
length of the network component of the address.

/web/secret/* https:,#131.185.250.128/255.255.255.192,~Moe,~Larry,~Curly,read

/web/secret/* https:,#131.185.250.128/26,~Moe,~Larry,~Curly,read

These examples both specify a 6 bit subnet. With the above examples the host 131.185.250.250
would be accepted, but 131.185.250.50 would be rejected.

Note that it more efficient to place protocol and host restrictions at the front of a list.

3.5 Authentication Sources
Authentication credentials may be validated against one of several sources, each with
different characteristics.

• VMS Rights Identifier

An identifier is indicated by appending a ‘‘=ID’’ to the name of the realm or group. Also
refer to Section 3.10.3.

3–8 Authentication and Authorization

Whether or not any particular username is allowed to authenticate via the SYSUAF may
be controlled by that account holding or not holding a particular rights identifier. Placing
‘‘=ID’’ against realm name implies the username must exist in the SYSUAF and hold the
specified identifier name.

[PROJECT_A=id]

When (and only when) a username has been authenticated via the SYSUAF, rights
identifiers associated with that account may be used to control the level-of-access within
that realm. This is in addition to any identifier controlling authentication itself.

[PROJECT_A=id;PROJECT_A_LIBRARIAN=id;PROJECT_A_USER=id]

In this example a username would need to hold the PROJECT_A identifier to be able
to authenticate, PROJECT_A_LIBRARIAN to write the path(s) (via POST, PUT) and
PROJECT_A_USER to be able to read the path(s).

• VMS Authentication

The server system SYSUAF may be used to authenticate usernames using the VMS
account name and password. The realm being VMS may be indicated by using the name
‘‘VMS’’, by appending ‘‘=VMS’’ to another name making it a VMS synonym, or by giving it
a specific description (Realm Description in Section 3.5). Further information on SYSUAF
authentication may be found in Section 3.10. These examples illustrate the general idea.

[VMS]
[LOCAL=vms]
[ANY_NAME_AT_ALL=vms]

• ACME

Three Authentication and Credential Management Extension (ACME) agents are cur-
rently available (as at VMS V8.3 and WASD v9.3), "VMS" (SYSUAF), "MSV1_0" (Mi-
crosoft domain authentication used by Advanced Server) and an LDAP kit. There is also
an API that will allow local or third-party agents to be developed. WASD ACME authen-
tication is completely asynchronous and so agents that make network or other relatively
latent queries will not add granularity into server processing. By default ACME is used
to authenticate requests against the SYSUAF on Alpha and Itanium running VMS V7.3
or later (Section 3.10.1).

For authorization rules explicitly specifying ACME the Domain Of Interpretation (DOI)
becomes the realm name, interposed between the relam description and the ACME
authentication source keyword. In this first example the DOI is VMS and so all WASD
SYSUAF authentication capabilities are available.

["ACME Coyote"=VMS=ACME;JIN_PROJECT=id]
/a/path/* r+w,https:

In the second example authentication is performed using the same credentials as Ad-
vanced Server running on the local system.

["PC Users"=MSV1_0=ACME]
/a/nuther/path/* r+w,https:

Authentication and Authorization 3–9

In this final example the DOI is a third-party agent.

["More ACME"=THIRD-PARTY=ACME]
/a/different/path/* r+w,https:

• Simple List

A plain-text list may be used to provide usernames for group membership. The format
is one username per line, at the start of the line, with optional, white-space delimited
text continuing along the line (which could be used as documentation). Blank lines and
comment lines are ignored. A line may be continued by ending it with a ‘‘\ ’’ character.
These files may, of course, be created and maintained using any plain text editor. They
must exist in the WASD_AUTH: directory, have an extension of ‘‘.$HTL’’, and do not need
to be world accessible.

the stooges
curley Jerome Horwitz
larry Louis Feinberg
moe Moses Horwitz
shemp Samuel Horwitz
JoeBesser
JoeDeRita

Simple lists are indicated in the configuration by appending a ‘‘=LIST’’ to the name.

[VMS;STOOGES=list]

It also possible to use a simple list for authentication purposes. The plain-text password
is appended to the username with a trailing equate symbol. Although in general this is
not recommended as everything is stored as plain-text it may be suitable as an ad hoc
solution in some circumstances. The following example shows the format.

silly example
fred=dancesalittle Guess who?
ginger=rogers No second prizes!

• HTA Database

These are binary, fixed 512 byte record files, containing authentication and authorization
information. HTA databases may be used for authentication and group membership
purposes. The content is much the same, the role differs according to the location
in the realm directive. These databases may be administered using the online Server
Administration facility (Section 9.5) or the HTAdmin command-line utility (Section 13.8).
They are located in the WASD_AUTH: directory and have an extension of ‘‘.$HTA’’.

(Essentially for historical reasons) HTA databases are the default sources for authoriza-
tion information. Therefore, using just a name, with no trailing ‘‘=something’’, will config-
ure an HTA source. Also, and recommended for clearly showing the intention, appending
the ‘‘=HTA’’ qualifier specifies an HTA database. The following example show some of the
variations.

[VMS;PROJECT_A=hta]
[DEVELOPERS=hta;PROJECT_A=hta]

• X.509 Client Certificate

3–10 Authentication and Authorization

Uses X.509 v3 certificates (browser client certificates) to establish identity (authentication)
and based on that identity control access to server resources (authorization). This is
only available for SSL transactions. See Chapter 4 for further information on SSL, and
Section 4.5.12 on X509 realm authorization.

• RFC1413 Indentification Protocol

From RFC1413 (M. St.Johns, 1993) . . .

The Identification Protocol (a.k.a., ‘‘ident’’, a.k.a., ‘‘the Ident Protocol’’) provides a means

to determine the identity of a user of a particular TCP connection. Given a TCP port

number pair, it returns a character string which identifies the owner of that connection on

the server’s system.

and . . .

The information returned by this protocol is at most as trustworthy as the host providing

it OR the organization operating the host. For example, a PC in an open lab has few if

any controls on it to prevent a user from having this protocol return any identifier the

user wants. Likewise, if the host has been compromised the information returned may be

completely erroneous and misleading.

The Identification Protocol is not intended as an authorization or access control protocol.

At best, it provides some additional auditing information with respect to TCP connections.

At worst, it can provide misleading, incorrect, or maliciously incorrect information.

Nevertheless, RFC1413 may be useful for some purposes in some heterogeneous environ-
ments, and so has been made available for authentication purposes.

[RFC1413]
["Descriptions can be used!"=RFC1413;A_PROJECT=list]

The RFC1413 realm generates no browser username/password dialog. It relies on the
system supporting the client to return a reliable identification of the user accessing the
HTTP server by looking-up the user of the server connection’s peer port.

• Authorization Agent

An authorization agent is a CGI-compliant CGIplus script that is specially activated
during the authorization processing. Using CGI environment variables it gets details of
the request, makes an assessment based on its own internal authentication/authorization
processing, and using the script callout mechanism returns the results to the server, which
then acting on these, allows or denies access.

Such agents allow a site to develop local authentication/authorization mechnisms rela-
tively easily, based on CGI principles. A discussion of such a development is not within
the scope of this section, see the ‘‘WASD Web Services - Scripting’’ document for informa-
tion on the use of callouts, and the example and working authorization agents provided
in the WASD_ROOT:[SRC.AGENT] directory. The description at the beginning of these
programs covers these topics in some detail.

An authorization agent would be configured using something like the following, where
the ‘‘AUTHAGENT’’ is the actual script name doing the authorization. This has the the
path ‘‘/cgiauth-bin/’’ prepended to it.

Authentication and Authorization 3–11

["Example Agent"=AUTHAGENT_EXAMPLE=agent]
/some/path/or/other/* r+w

It is possible to supply additional, per-path information to an agent. This can be any
free-form text (up to a maximum length of 63 characters). This might be a configuration
file location, as used in the example CEL authenticator. For example

["CEL Authenticator"=AUTHAGENT_CEL=agent]
/some/path/or/other/* r+w,param=WASD_ROOT:[LOCAL]CEL1.LIS
/a/nother/path/* r+w,param=WASD_ROOT:[LOCAL]CEL2.LIS

Generally authorization agent scripts use 401/WWW-Authorize: transactions to establish
identity and credentials. It is possible for an agent to establish identity outside of this
using mechanisms available only to itself. In this case it is necessary suppress the usually
automatic generation of username/password dialogs using a realm of agent+opaque

[AUTHAGENT_PAPI=agent+opaque]
/papi/path/or/other/* r+w
/a/nother/papi/path/* r+w

An older mechanism required a leading parameter of ‘‘/NO401’’. It is included here only
for reference. The agent+opaque realm should now always be used.

["Another Authenticator"=AUTHAGENT_ANOTHER=agent]
/some/path/or/other/* r+w,param="/NO401 MORE PARAMETERS CAN BE SUPPLIED"
/a/nother/path/* r+w,param="/NO401 OTHER PARAMETERS CAN BE SUPPLIED"

It is necessary to have the following entry in the WASD_CONFIG_MAP configuration file:

exec+ /cgiauth-bin/* /cgi-bin/*

This allows authentication scripts to be located outside of the general server tree if desired.

• Token

A token is a short-lived, cookie delivered, representation of authentication established
in another context. Originally devised to allow controlled access to very large datasets
without the overhead of SSL in the transmission but with access credentials supplied in
the privacy of an SSL connection. The cookie contains NO CREDENTIAL data at all and
the authenticator manages an internal database of these so it can determine whether
any supplied token is valid and when that token has expired. By default (and commonly)
token authorisation occurs in non-SSL space (http:) and the credential authorisation in
SSL space (https:).

Token authorisation is described in Section 3.11).

• Host Group

Instead of a list of usernames contained in a database, a group within a realm (either or
both full-access-source or read-only-source, see Section 3.4) may be specified as a host,
group of hosts or network mask. This acts to restrict all requests from clients not
matching the IP address specification. Unlike the per-path access restrict list (Access
Restriction Keywords) this construct applies to all paths in the realm. It also offers
relative efficiencies over restriction lists and lends itself to some environments based on
per-host identification (e.g. the RFC1413 realm). Note that IP addresses can be spoofed

(impersonated) so this form of access control should be deployed with some caution.

3–12 Authentication and Authorization

[RFC1413;131.185.250.*]
/path1/to/be/authorized/* r+w

[RFC1413;131.185.250.0/24]
/path2/to/be/authorized/* r+w

[RFC1413;131.185.250.0/255.255.255.0]
/path3/to/be/authorized/* r+w

The examples of realm specifications above all act to restrict read-write access via the
RFC1413 realm to hosts within the 131.185.250.nnn subnet.

• External

Generally the WASD model is for the server to perform authorisation processing and so
the password never becomes visible at the application level. For scripting environments
performing their own authentication the server will decode and parse the request ‘‘Au-
thorization:’’ header for paths under the EXTERNAL realm.

[EXTERNAL]
/some/path/or/other/* r+w

The various authentication data are then provided in the CGI variables

AUTH_TYPE
AUTH_ACCESS
AUTH_PASSWORD
AUTH_REALM
AUTH_REALM_DESCRIPTION
HTTP_AUTHORIZATION
REMOTE_USER

• Opaque

If the script is performing its own authentication and authorisation using the raw request
header then the server needs to be advised of this by placing the required paths under
the OPAQUE realm.

[OPAQUE]
/another/path/* r+w

The server will then provide only the ‘‘Authorization:’’ header data in the cgi variable
HTTP_AUTHORIZATION from which the username and password may processed.

Multiple Source Types

A realm directive may contain one or more different types of authorization information source,
with the following restrictions.

• Rights identifiers may only be used with SYSUAF authenticated requests. The following
combinations would therefore not be allowed.

[DEVELOPERS;PROJECT_A=id]
[DEVELOPERS=hta;LIBRARIAN=id;PROJECT_A=list]
[STOOGES=list;MOE_HOWARD=id]

Authentication and Authorization 3–13

• WASD rights identifiers (deprecated) may only be used for group membership when the
/AUTHORIZE=WASD server qualifier has been specified at startup, and the username
has been authenticated using a WASD identifier. See Section 3.10.4.

Realm Description

It is possible to supply text describing the authentication realm to the browser user that
differs from the actual source name. This may be used to disguise the actual source or to
provide a more informative description than the source name conveys.

Prefixing the actual realm source name with a double-quote delimited string (of up to 31
characters) and an equate symbol will result in the string being sent to a browser as the
realm description during an authentication challenge. Here are some examples.

["the local host"=VMS]
["Social Club"=SOCIAL_CLUB_RW=id]
["Finance Staff"=FINANCE=list]
["Just Another Database"=DBACCESS=hta]

Note
The Digest authentication scheme uses the realm description at both server and
browser in the encrypted password challenge and response. When passwords are
stored in an HTA file this realm synonym cannot be changed without causing these
passwords to be rendered invalid.

3.6 Realm, Full-Access, Read-Only
WASD authorization offers a number of combinations of access control. This is a summary.
Please note that when refering to the level-of-access a particular username may be allowed
(read-only or full, read-write access), that it is always moderated by the level-of-access
provided with a path configured within that realm. See Section 3.3.

• Authentication Only

When a path is controlled by a realm that comprises an authentication source only, as in
this example

[authentication-source]

usernames authenticated using that are granted full (read and write) access.

• Authentication and Group

Where a group membership source is provided following the authentication source, as
illustrated in this example

[authentication-source;group-source]

the level-of-access depends on the source of the group membership. If from a simple-list

of usernames or via a VMS rights identifier the username receives full (read and write)
access. If from an HTA database the access is dependent on what is set against that user
in the database. It can be either full or read-only.

• Authentication and Two Groups

3–14 Authentication and Authorization

When a second group is specified, as in

[authentication-source;group-source;group-source]

the authentication is interpreted in a fixed fashion. The first group specified contains
usernames to be granted full (read and write) access. The second group read-only access.
Should a username occur in both groups full access takes precedence.

The second group may be specified as an asterisk wildcard (‘‘*’’) which is interpreted as
everyone else (i.e. everyone else gets read-only access).

3.7 Virtual Servers
As described in ‘‘WASD Web Services - Install and Config’’), virtual service syntax may be used
with authorization mapping to selectively apply rules to one specific service. This example
provides the essentials of using this syntax. Note that service-specific and service-common
rules may be mixed in any order allowing common authorization environments to be shared.

authorization rules example for virtual servers
[[alpha.example.com:443]]
ALPHA SSL is the only service permitting VMS (SYSUAF) authentication
[LOCAL=vms]
/web/* https:,r+w ; r
/httpd/-/admin/* ~daniel,https:,r+w
[[beta.example.com:80]]
BETA has its own HTA database
[BETA_USER=hta]
/web/* r+w ; r
[[gamma.example.com:80]]
GAMMA likewise
[GAMMA_DEVELOPER=id;PROJECT-A=list]
/web/project/a/* r+w ; r
[GAMMA_DEVELOPER=id;PROJECT-B=list]
/web/project/b/* r+w ; r
[[*]]
allow anyone from the local subnet to upload to here
[WORLD]
/web/unload/* 131.185.200.*,r+w

The online Server Administration facility path authorization report (Section 9.4) provides a
selector allowing the viewing and checking of rules showing all services or only one particular
virtual server, making it simpler to see exactly what any particular service is authorizing
against.

3.8 Authorization Configuration Examples
Mixed case is used in the configuration examples (and should be in configuration files) to
assist in readability. Rule interpretation however is completely case-insensitive.

1. In the following example the authentication realm is ‘‘WASD’’, a synonym for SYSUAF
authentication, and the permissions group ‘‘SOCIALCLUB’’, a simple list of usernames.
The directive allows those authenticated from the WASD realm and in the SOCIALCLUB
group full access (read and write), and the world read-only.

[WASD=vms;SOCIALCLUB=list]
/web/socialclub/* r+w ; read

Authentication and Authorization 3–15

2. This example illustrates restricting access according internet address. Both the group and
world restriction is identical, but the group address is being specified numerically, while
the world access is being specified alphabetically (just for the purposes of illustration).
This access check is done doing simple wildcard comparison, and makes numerical
specifications potentially more efficient because they are usually shorter. The second
line restricts that path’s write access even further, to one username, ‘‘BLOGGS’’.

[WASD=vms;SOCIALCLUB=list]
/web/socialclub/* 131.185.45.*,get,post; *.example.com,get
/web/socialclub/accounts/* 131.185.45.*,~BLOGGS,get,post; *.example.com,get

3. Three sources for authorization are specified in the following example. As the authen-
tication source is VMS (by rights identifier), the full-access group and read-only group
can also be determined by possessing the specified identifiers. The first path can only be
written to by those holding the full-access identifier (librarian), the second path can only
be read by both. The world has no access to these paths.

[DEVELOPER=id;PROJECT_A_LIBRARIAN=id;PROJECT_A_USER=id]
/web/projects/a/* r+w
/web/projects/* r

4. This example is the same as the one above, except in this case everyone else (that can
authenticate against the resource) gets read-only access to the projects.

[DEVELOPER=id;PROJECT_A_LIBRARIAN=id;*]
/web/projects/a/* r+w
/web/projects/* r

5. In the following example the authentication realm and group are a single HTA database,
‘‘ADMIN’’. The first directive allows those in the ADMIN group to read and write, and
the world to read (‘‘get,post;get’’). The second line restricts write and even read access to
ADMIN group, no world access at all (‘‘get,post’’).

[ADMIN=hta]
/web/everyone/* get,post;get
/web/select/few/* get,post

6. With this example usernames are used to control access to the specified paths. These
usernames are authenticated from the COMPANY database. The world has read access
in both cases. Note the realm description, ‘‘The Company’’.

["The Company"=COMPANY=hta]
/web/docs/* ~Howard,~George,~Fred,r+w ; r
/web/accounts/* ~George,r+w ; r

7. The following example shows a path specifying the local system’s SYSUAF being used
to authenticate any usernames. Whenever using SYSUAF authentication it is strongly
recommended to limit the potential hosts that can authenticate in this way by always
using a host-limiting access restriction list. The world gets read access.

[VMS]
/web/local/area/* 131.185.250.*,r+w ; r

3–16 Authentication and Authorization

8. To restrict server administration to browsers executing on the server system itself
and the SYSUAF-authenticated username DANIEL use a restriction list similar to the
following. It also shows the use of SYSUAF-authentication being hidden by using a realm
description.

["not the VMS SYSUAF"=VMS]
/httpd/-/admin/* #localhost,~daniel,r+w

9. This example uses the RFC1413 identification protocol as the authentication source and
a host group to control full access to paths in the realm.

["Ident Protocol"=RFC1413;131.185.250.0/24]
/web/local/* r+w

10. The following example illustrates providing a read and writable area (GET, POST and
PUTable) to hosts in the local network without username authentication (careful!).

[WORLD]
/web/scratch/* *.local.hosts.only,r+w

3.8.1 KISS

WASD authorization allows for very simple authorization environments and provides the
scope for quite complex ones. The path authentication scheme allows for multiple,
individually-maintained authentication and authorization databases that can then be admin-
istered by autonomous managers, applying to widely diverse paths, all under the ultimate
control of the overall Web administrator.

Fortunately great complexity is not generally necessary.

Most sites would be expected to require only an elementary setup allowing a few selected Web
information managers the ability to write to selected paths. This can best be provided with
the one authentication database containing read and write permissions against each user,
with and access-restriction list against individual paths.

For example. Consider a site with three departments, each of which wishes to have three
representatives capable of administering the departmental Web information. Authentication
is via the SYSUAF. Web administrators hold an approriate VMS rights identifier, ‘‘WEBAD-
MIN’’. Department groupings are provided by three simple lists of names, including the Web
administrators (whose rights identifier would not be applied if access control is via a simple
list), a fourth lists those with read-only access into the Finance area. The four grouping files
would look like:

Department 1 # Department 2
WEB1 WEB1
WEB2 WEB2
JOHN RINGO
PAUL CURLY
GEORGE LARRY

Department 3 # Finance (read access)
WEB1 PAUL
WEB2 GEORGE
MOE JOHN
SHEMP RINGO
MAC

Authentication and Authorization 3–17

The authorization configuration file then contains:

###

allow web masters (!) to use the server administration facility
to revise web configuration files
world has no access (read or write)
access is only allowed from a browser in the same subnet as the HTTPd
["Hypo Thetical Corp."=HYPOTHETICAL=vms;WEBADMIN=id]
/httpd/-/admin/* #150.15.30.*,r+w
/wasd_root/local/* #150.15.30.*,r+w

allows Department 1 representatives to maintain their web
this may only be done from within the company subnet
world has read access
["Hypo Thetical Corp."=HYPOTHETICAL=vms;DEPARTMENT1=list]
/web/dept/general/* 150.15.30.*,r+w ; r

and so on for the rest of the departments

["Hypo Thetical Corp."=HYPOTHETICAL=vms;DEPARTMENT2=list;FINANCE=list]
no world read access into finance, only those in the FINANCE list
/web/dept/finance/* 150.15.30.*,r+w

["Hypo Thetical Corp."=HYPOTHETICAL=vms;DEPARTMENT3=list]
/web/dept/inventory/* 150.15.30.*,r+w ; r
/web/dept/production/* 150.15.30.*,r+w ; r
(the next uses line continuation just for illustration)
/web/dept/marketing/* 150.15.30.*,\

r+w ;\
read

we need an area for general POSTing (just for illustration :-)
[WORLD]
/web/world/* r+w

###

3.9 Authorization Cache
Access to authentication sources, SYSUAF, simple lists and HTA databases, are relatively
expensive operations. To reduce the impact of this activity on request latency and general
server performance, authentication and realm-associated permissions for each authenticated
username are stored in a cache. This means that only the initial request needs to be checked
from appropriate databases, subsequent ones are resolved more quickly and efficiently from
cache.

Such cached entries have a finite lifetime associated with them. This ensures that authoriza-
tion information associated with that user is regularly refreshed. This period, in minutes,
is set using the [AuthCacheMinutes] configuration parameter. Zero disables caching with a
consequent impact on performance.

3–18 Authentication and Authorization

Implication

Where-ever a cache is employed there arises the problem of keeping the contents current. The
simple lifetime on entries in the authentication cache means they will only be checked for
currency whenever it expires. Changes may have occured to the databases in the meantime.

Generally there is are other considerations when adding user access. Previously the user
attempt failed (and was evaluated each time), now the user is allowed access and the result
is cached.

When removing or modifying access for a user the cached contents must be taken into account.
The user will continue to experience the previous level of access until the cache lifetime
expires on the entry. When making such changes it is recommended to explicitly purge the
authentication cache either from the command line using /DO=AUTH=PURGE (Section 9.7)
or via the Server Administration facility (Chapter 9). Of course the other solution is just to
disable caching, which is a less than optimal solution.

3.10 SYSUAF-Authenticated Users
The ability to authenticate using the system’s SYSUAF is controlled by the server
/SYSUAF[=keyword] qualifier. By default it is disabled.

WARNING!
SYSUAF authentication is not recommended except in the most secure of LAN
environments or when SSL is employed.

HTTP credentials (username and password) are transmitted as encoded plain-text
making them vulnerable to evesdropping.

By default accounts with SYSPRV authorized are always rejected to discourage the use of
potentially significant usernames (e.g. SYSTEM). This behaviour can be changed through
the use of specific identifiers, see Section 3.10.3 immediately below. Accounts that are
disusered, have passwords that have expired or that are captive or restricted are always
rejected. Accounts that have access day/time restricting access will have those restrictions
honoured (see Section 3.10.3 for a workaround for this).

Also see Section 3.10.6.

3.10.1 ACME

By default the Authentication and Credential Management Extension (ACME) is used to au-
thenticate SYSUAF requests on Alpha and Itanium running VMS V7.3 or later (Section 3.5).
VAX and earlier versions of VMS use WASD’s own SYSUAF authentication routines. The ad-
vantage of ACME is with the processing of the (rather complex) authentication requirements
by a vendor-supplied implementation. It also allows SYSUAF password change to be made
subject to the full site policy (password history, dictionary checking, etc.) which WASD does
not implement.

Authentication and Authorization 3–19

3.10.2 Logon Type

By default SYSUAF authentication uses the NETWORK access restriction from the account
SYSUAF record. Alternatives LOCAL, DIALUP and REMOTE may be specified using global
configuration directive

WASD_CONFIG_GLOBAL
[AuthSYSUAFlogonType] REMOTE

and/or authorization rule parameter ’param="logon=REMOTE"’

["VMS Credentials"=WASD_VMS_RW=ID]
/secured/* r+w,https,param="logon=REMOTE"

(which takes precedence).

3.10.3 Rights Identifiers

Whether or not any particular username is allowed to authenticate via the SYSUAF may be
controlled by that account holding or not holding a particular VMS rights identifier. When
a username has been authenticated via the SYSUAF, rights identifiers associated with that
account may be used to control the level-of-access within that realm.

Use of identifiers for these purposes are enabled using the /SYSUAF=ID server startup
qualifier.

The first three reserved identifier names are optional. A warning will be reported during
startup if these are not found. The fourth must exist if SYSUAF proxy mappings are used in
a /SYSUAF=ID environment.

• WASD_HTTPS_ONLY - restricts accounts holding it to authenticating using SSL
(https:). Authentication via a standard ‘‘http:’’ will always be denied.

• WASD_NIL_ACCESS - allows accounts with access time restrictions to authenticate via
the SYSUAF. This is particularly intended to support the use of nil-access accounts, see
Section 3.10.6.

• WASD_PASSWORD_CHANGE - allows an account to modify its SYSUAF password, if
this is configured for the server, see Section 3.15.

• WASD_PROXY_ACCESS - allows an account to be used for proxy access if /SYSUAF=ID
is in effect, see Section 3.10.5.

Identifiers may be managed using the following commands. If unsure of the security impli-
cations of this action consult the relevant VMS system management security documentation.

$ SET DEFAULT SYS$SYSTEM
$ MCR AUTHORIZE
UAF> ADD /IDENTIFIER WASD_HTTPS_ONLY
UAF> ADD /IDENTIFIER PROJECT_USER
UAF> ADD /IDENTIFIER PROJECT_DEVELOPER
UAF> ADD /IDENTIFIER PROJECT_LIBRARIAN

They can then be provided to desired accounts using commands similar to the following:

UAF> GRANT /IDENTIFIER PROJECT_USER <account>

3–20 Authentication and Authorization

and removed using:

UAF> REVOKE /IDENTIFIER PROJECT_USER <account>

Be aware that, as with all successful authentications, and due to the WASD internal
authentication cache, changing database contents does not immediately affect access. Any
change in the RIGHTSLIST won’t be reflected until the cache entry expires or it is explicitly
flushed (Section 3.9).

3.10.4 WASD ‘‘Hard-Wired’’ Identifiers

Deprecated and Discouraged

As this has been deprecated for some years now the documentation for this function-
ality has been removed.

For backward-reference see the ‘‘WASD Hypertext Services - Technical Overview’’
document for release v9.3 or earlier.

3.10.5 VMS Account Proxying

Any authentication realm can have its usernames mapped into VMS usernames and the
VMS username used as if it had been authenticated from the SYSUAF. This is a form of
proxy access.

CAUTION
This is an extremely powerful mechanism and as a consequence requires enabling
on the command-line at server startup using the /SYSUAF=PROXY qualifier and
keyword. If identifiers are used to control SYSUAF authentication (i.e. /SYSUAF=ID)
then any account mapped by proxy access must hold the WASD_PROXY_ACCESS
identifier described in Section 3.10.3 (and server startup would be something like
"/SYSUAF=(ID,PROXY)").

When a proxy mapping occurs request user authorization detail reflects the SYSUAF user-
name characteristics, not the actual original authentication source. This includes username,
user details (i.e. becomes that derived from the owner field in the SYSUAF), constraints on the
username access (e.g. SSL only), and user capabilities including any profile if enabled. Autho-
rization source detail remains unchanged, reflecting the realm, realm description and group
of the original source. For CGI scripting an additional variable, WWW_AUTH_REMOTE_
USER, provides the original remote username.

For each realm, and even for each path, a different collection of mappings can be applied.
Proxy entries are strings containing no white space. There are three basic variations, each
with an optional host or network mask component.

1. remote[@host | @network/mask]=SYSUAF

2. *[@host | @network/mask]=SYSUAF

3. *[@host | @network/mask]=*

Authentication and Authorization 3–21

The SYSUAF is the VMS username being mapped to. The remote is the remote username (CGI
variable WWW_REMOTE_USER). The first variation maps a matching remote username (and
optional host/network) onto the specific SYSUAF username. The second maps all remote
usernames (and optional host/network) to the one SYSUAF username (useful as a final
mapping). The third maps all remote usernames (optionally on the remote host/network)
into the same SYSUAF username (again useful as a final mapping if there is a one-to-one
equivalence between the systems).

Proxy mappings are processed sequentially from first to last until a matching rule is
encountered. If none is found authorization is denied. Match-all and default mappings can
be specified.

[RFC1413]
[AuthProxy] bloggs@131.185.250.1=fred
[AuthProxy] doe@131.185.250.*=john system=- *@131.185.252.0/24=*
[AuthProxy] *=GUEST

In this example the username bloggs on system 131.185.250.1 can access as if the request had
been authenticated via the SYSUAF using the username and password of FRED, although
of course no SYSUAF username or password needs to be supplied. The same applies to the
second mapping, doe on the remote system to JOHN on the VMS system. The third mapping
disallows a system account ever being mapped to the VMS equivalent. The fourth, wildcard
mapping, maps all accounts on all systems in 131.185.250.0 8 bit subnet to the same VMS
username on the server system. The fifth mapping provides a default username for all other
remote usernames (and used like this would terminate further mapping).

Note that multiple, space-separated proxy entries may be placed on a single line. In this case
they are processed from left to right and first to last.

["Just an Example"=EXAMPLE=list]
[AuthProxy] bloggs@131.185.250.1=fred doe@131.185.250.1=doe system=- \
@131.185.252.0/24= *=GUEST

Proxy mapping rules should be placed after a realm specification and before any authorization
path rules in that realm. In this way the mappings will apply to all rules in that realm. It
is possible to change the mappings between rules. Just insert the new mappings before the
(first) rule they apply to. This cancels any previous mappings and starts a new set. This is
an example.

["A Bunch of Users"=USERS=hta]
[AuthProxy] bloggs@131.185.250.1=fred doe@131.185.250.1=john
/fred/and/johns/path/* r+w
[AuthProxy] *=GUEST
/other/path/* read

An alternative to in-line proxy mapping is to provide the mappings in one or more independent
files. In-line and in-file mappings may be combined.

["Another Bunch of Users"=MORE_USERS=hta]
[AuthProxy] SYSTEM=-
[AuthProxyFile] WASD_ROOT:[LOCAL]PROXY.CONF
/path/for/proxy* r+w

3–22 Authentication and Authorization

To cancel all mappings for following rules use an [AuthProxy] (with no following mapping
detail). Previous mappings are always cancelled with the start of a new realm specification.
Where proxy mapping is not enabled at the command line or a proxy file cannot be loaded at
startup a proxy entry is inserted preventing all access to the path.

REMEMBER - proxy processing can be observed using the WATCH facility.

3.10.6 Nil-Access VMS Accounts

It is possible, and may be quite effective for some environments, to have a SYSUAF account
or accounts strictly for HTTP authorization, with no actual interactive or other access allowed
to the VMS system itself. This would relax the caution on the use of SYSUAF authentication
outside of SSL transactions. An obvious use would be for the HTTP server administrator.
Additional accounts could be provided for other authorization requirements, all without
compromising the system’s security.

In setting up such an environment it is vital to ensure the HTTPd server is started using the
/SYSUAF=ID qualifier (Section 3.2). This will require all SYSUAF-authenticated accounts to
possess a specific VMS resource identifier, accounts that do not possess the identifier cannot
be used for HTTP authentication. In addition the identifier WASD_NIL_ACCESS will need
to be held (Section 3.10.3), allowing the account to authenticate despite being restricted by
REMOTE and NETWORK time restrictions.

To provide such an account select a group number that is currently unused for any other
purpose. Create the desired account using whatever local utility is used then activate VMS
AUTHORIZE and effectively disable access to that account from all sources and grant the
appropriate access identifier (see Section 3.10.3 above).

$ SET DEFAULT SYS$SYSTEM
$ MCR AUTHORIZE
UAF> MODIFY <account> /NOINTERACTIVE /NONETWORK /NOBATCH /FLAG=DISMAIL
UAF> GRANT /IDENTIFIER WASD_VMS_RW <account>

3.10.7 SYSUAF and SSL

When SSL is in use (Chapter 4) the username/password authentication information is
inherently secured via the encrypted communications of SSL. To enforce access to be via
SSL add the following to the WASD_CONFIG_MAP configuration file:

/whatever/path/you/like/* "403 Access denied." ![sc:https]

or alternatively the following to the WASD_CONFIG_AUTH configuration file:

[REALM]
/whatever/path/you/like/* https:

Note that this mechanism is applied after any path and method assessment made by the
server’s authentication schema.

The qualifier /SYSUAF=SSL provides a powerful mechanism for protecting SYSUAF authen-
tication, restricting SYSUAF authenticated transactions to the SSL environment. The com-
bination /SYSUAF=(SSL,ID) is particularly effective.

Also see Section 3.2.

Authentication and Authorization 3–23

3.10.8 SYSUAF Security Profile

It is possible to control access to files and directories based on the VMS security profile of a
SYSUAF-authenticated remote user. This functionality is implemented using VMS security
system services involving SYSUAF and RIGHTSLIST information. The feature must be
explicitly allowed using the server /PROFILE qualifier. By default it is disabled.

Note
Use caution when deploying the /PROFILE qualifier. It was really designed with a
very specific environment in mind, that of an Intranet where the sole purpose was to
provide VMS users access to their normal VMS resources via a Web interface.

When a SYSUAF-authenticated user (i.e. the VMS realm) is first authenticated a VMS
security-profile is created and stored in the authentication cache (Section 3.9). A cached
profile is an efficient method of implementing this as it obviously removes the need of creating
a user profile each time a resource is assessed. If this profile exists in the cache it is attached
to each request authenticated for that user. As it is cached for a period, any change to a user’s
security profile in the SYSUAF or RIGHTSLIST won’t be reflected in the cached profile until
the cache entry expires or it is explicitly flushed (Section 9.6).

When a request has this security profile all accesses to files and directories are assessed
against it. When a file or directory access is requested the security-profile is employed by a
VMS security system service to assess the access. If allowed, it is provided via the SYSTEM
file protection field. Hence it is possible to be eligible for access via the OWNER field but
not actually be able to access it because of SYSTEM field protections! If not allowed, a ‘‘no
privilege’’ error is generated.

Once enabled using /PROFILE it can be applied to all SYSUAF authenticated paths, but must
be enabled on a per-path basis, using the WASD_CONFIG_AUTH profile keyword (Access
Restriction Keywords)

WASD_CONFIG_AUTH
[VMS;VMS]
/wasd_root/local/* profile,https:,r+w

or the WASD_CONFIG_MAP SET profile and noprofile mapping rules (see ‘‘WASD Web
Services - Install and Config’’).

WASD_CONFIG_MAP
set /wasd_root/local/* profile
set * noprofile

Of course, this functionality only provides access for the server, IT DOES NOT PROPAGATE
TO ANY SCRIPT ACCESS. If scripts must have a similar ability they should implement
their own scheme (which is not too difficult,) see WASD_ROOT:[SRC.MISC]CHKACC.C
based on the CGI variable WWW_AUTH_REALM which would be ‘‘VMS’’ indicating SYSUAF-
authentication, and the authenticated name in WWW_REMOTE_USER.

3–24 Authentication and Authorization

Performance Impact

If the /PROFILE qualifier has enabled SYSUAF-authenticated security profiles, whenever a
file or directory is assessed for access an explicit VMS security system service call is made.
This call builds a security profile of the object being assessed, compares the cached user
security profile and returns an indication whether access is permitted or forbidden. This is
addition to any such assessments made by the file system as it is accessed.

This extra security assessment is not done for non-SYSUAF-authenticated accesses within
the same server.

For file access this extra overhead is negligible but becomes more significant with directory
listings (‘‘Index of’’) where each file in the directory is independently assessed for access.

3.10.9 SYSUAF Profile For Full Site Access

Much of a site’s package directory tree is inaccessible to the server account. One use of the
SYSUAF profile functionality is to allow authenticated accesss to all files in that tree. This
can accomplished by creating a specific mapping for this purpose, subjecting that to SYSUAF
authentication with /PROFILE behaviour enabled (Section 3.10.8), and limiting the access
to a SYSTEM group account. As all files in the WASD package are owned by SYSTEM the
security profile used allows access to all files.

The following example shows a path with a leading dollar (to differentiate it from general
access) being mapped into the package tree. The ‘‘set * noprofile’’ limits the application of
this to the /$WASD_ROOT/ path (with the inline ‘‘profile’’).

WASD_CONFIG_MAP
set * noprofile
.
.
.

pass /wasd_root/* /wasd_root/*
pass /$WASD_ROOT/* /wasd_root/* profile

This path is then subjected to SYSUAF authentication with access limited to an SSL request
from a specific IP address (the site administrator’s) and the SYSTEM account.

WASD_CONFIG_AUTH
[["/$WASD_ROOT/ Access"=WASD_TREE_ACCESS=id]]
/$WASD_ROOT/* https,10.1.1.2,~system,read

3.11 Token Authentication
This is a niche authorisation environment for addressing niche requirements.

A token is an HTTP cookie delivered representation of authentication established in another
context. Originally devised to allow controlled access to very large datasets without the
overhead of SSL in the transmission but with access credentials supplied in the privacy of an
SSL connection.

A common scenario is where the client starts off attempting to access a resource in non-SSL
space which is controlled by token authentication. In the first instance the authenticator
detects there is no access token present and redirects the client (browser) to the SSL
equivalent of that space, where credentials can be supplied encrypted. In this example

Authentication and Authorization 3–25

scenario the SSL area is controlled by WASD SYSUAF authentication (can be SSL client
certificate, etc.) and the username/password is prompted for. When correctly entered this
generates a token. The token is stored (with corresponding detail) as a record in a server-
internal database and then returned to the browser as a set-cookie value.

With the token data stored the browser is transparently redirected back to the non-SSL space
where the actual access is to be undertaken, this time the browser presenting the cookie
containing the token. The authenticator examines the token, looking it up in the database. If
found, has originated from the same IP address, represents the same authentication realm,
and has not expired, it then allows the non-SSL space access to proceed, and in this example
scenario the dataset transfer is initiated (in unencrypted clear-text). If the token is not found
in the database or has expired, then the process is repeated with a redirect back into SSL
space. If the realms differ a 403 forbidden response is issued (see configuration below).

The token itself is a significant sequence of pseudo-random characters, is short-lived (config-
urable as anything from a few seconds to a few tens of seconds, or more), and as a consequence
is frequently regenerated. The token is just that, containing no actual credential data at all.
It might be possible to snoop but as it contains nothing of value in itself, expires relatively
quickly, and has an originating IP address check, the fairly remote risk of playback is just
that.

The authenticator does all the work, implicitly redirecting the user from non-SSL space to
SSL space for the original authentication, and then back again with the token used for access
in the non-SSL space. With the expiry of a token it undertakes that cycle again, redirecting
back to the SSL-space where the browser-cached credentials will be supplied automatically
allowing the fresh token to be issued, and then redirected back into non-SSL space for access.
To emphasise - all this is transparent to the user.

As a consequence of this model the resource being controlled can ONLY be accessed from non-
SSL space using the controlled path. To access the same resource from SSL space a distinct
path to the resource must be provided.

Configuration

As token authorisation relies on the client agent having HTTP cookies enabled (globally or
specifically for the site) it is useful to have this tested for and/or advised about, on some
related but other area of the site. There are simple techniques using JavaScript for detecting
the availability of cookie processing. Search the Web for a suitable solution.

The automatic authorisation and redirection occurs using a combination of two distinguish-
able authorisation rules, one for supplying the credentials, the other for using the token for
authorisation. In this example (and commonly) the resources are at "/location/" and the config-
uration accepts user-supplied credentials in SSL space and uses the token in non-SSL space.
The asterisk just indicates that in the absence of any other parameter this authorisation rule
has a complementary token rule where access will actually occur.

3–26 Authentication and Authorization

WASD_CONFIG_AUTH
if (ssl:)

["VMS credentials"=WASD_VMS_RW=id+"TOKEN=*"]
/location/* r+w

else
[WASD_VMS_RW=TOKEN]
/location/* r+w

endif

And in this example, the same arrangement but with non-standard ports (specified using an
integer with a leading colon).

WASD_CONFIG_AUTH
if (ssl:)

["VMS credentials"=WASD_VMS_RW=id+"TOKEN=:7080"]
/location/* r+w

else
[WASD_VMS_RW=TOKEN+"TOKEN=:7443"]
/location/* r+w

endif

To prevent potential thrashing, where multiple, distinct realms within a single request are
authorised using tokens, corresponding multiple token (cookie) names must be used. It is
expected that this would be an uncommon but not impossible scenario. The ‘‘thrashing’’ would
be a result of authorisation associated with a single, particular token name. Where a realm
differs from a previous token generated another is required. The token authorisation scheme
forces the use of distinct token names by 403-forbidding change of realm using the one token.
Use explicitly specified, independent token (cookie) names, or an integer preceded by an
ampersand (which appends the integer to the base token name), ensuring the complementary
rules are using the same name/integer.

WASD_CONFIG_AUTH
if (ssl:)

["VMS credentials"=WASD_VMS_RW=id+"TOKEN=&42"]
/location/* r+w

else
[WASD_VMS_RW=TOKEN+"TOKEN=&42"]
/location/* r+w

endif

For the final example, the token is contained in the non-default cookie named "WaSd_example"
and the authentication performed using an X509 client certificate (which can only be supplied
via SSL).

WASD_CONFIG_AUTH
if (ssl:)

[X509+"TOKEN=WaSd_example"]
/location/* r+w

else
[X509=TOKEN+"TOKEN=WaSd_example"]
/location/* r+w

endif

Some additional detail is available from the AUTHTOKEN.C code module.

Authentication and Authorization 3–27

3.12 Skeleton-Key Authentication
Provides a username and password that is authenticated from data placed into the global
common (i.e. in memory) by the site administrator. The username and password expire
(become non-effective) after a period, one hour by default or an interval specified when the
username and password are registered.

It is a method for allowing ad hoc authenticated access to the server, primarily in-
tended for non-configured access to the online Server Administration facilities (Sec-
tion 9.1) but is available for other purposes where a permanent username and password
in an authentication database is not necessary. A skeleton-key authenticated request
is subject to all other authorization processing (i.e. access restrictions, etc.), and can be con-
trolled using the likes of ’~_*’, etc.

The site administrator uses the command line directive

$ HTTPD /DO=AUTH=SKELKEY=_username:password[:period]

to set the username/password, and optionally the period in minutes. This authentication
credential can be cancelled at any time using

$ HTTPD /DO=AUTH=SKELKEY=0

The username must begin with an underscore (to reduce the chances of clashing with a
legitimate username) and have a minimum of 6 other characters. The password is delimited
by a colon and must be at least 8 characters. The optional period in minutes can be from 1
to 10080 (one week). If not supplied it defaults to 60 (one hour). After the period expires the
skeleton key is no longer accepted until reset.

Note
Choose username and password strings that are less-than-obvious and a period that’s
sufficient to the task! After all, it’s your site that you might compromise!

The authentication process (with skeleton-key) is performed using these basic steps.

1. Is a skeleton-key set? If not continue on with the normal authentication process.

2. If set then check the request username leading character for an underscore. If not then
continue on with normal authentication.

3. If it begins with an underscore then match the request and skeleton-key usernames. If
they do not match then continue with normal authentication.

4. If the usernames match then compare the request and skeleton-key passwords. If matched
then it’s authenticated. If not it becomes an authentication failure.

Note that the authenticator resumes looking for a username from a configured authentication
source unless the request and skeleton-key usernames match. After that the passwords either
match allowing access or do not match resulting in an authentication failure.

Examples
$ HTTPD /DO=AUTH=SKELKEY=_FRED2ACC:USE82PA55

$ HTTPD /DO=AUTH=SKELKEY=_ANDY2WERP:EGGO4TEE:10

3–28 Authentication and Authorization

3.13 Controlling Server Write Access
The server account should have no direct write access to into any directory structure.
Files in these areas should be owned by SYSTEM ([1,4]). Write access for the server
into VMS directories (using the POST or PUT HTTP methods) should be controlled using
VMS ACLs. This is in addition to the path authorization of the server itself of
course! The recommendation to have no ownership of files and provide an ACE on required
directories prevents inadvertant mapping/authorization of a path resulting in the ability to
write somewhere not intended.

Two different ACEs implement two grades of access.

1. If the ACE grants CONTROL access to the server account then only VMS-authenticated
usernames with security profiles can potentially write to the directory. Only potentially,
because a further check is made to assess whether that VMS account in particular has
write access.

This example shows a suitable ACE that applies only to the original directory:

$ SET SECURITY directory.DIR -
/ACL=(IDENT=HTTP$SERVER,ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL)

This example shows setting an ACE that will propagate to created files and importantly,
subdirectories:

$ SET SECURITY directory.DIR -
/ACL=((IDENT=HTTP$SERVER,OPTIONS=DEFAULT,ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL), -

(IDENT=HTTP$SERVER,ACCESS=READ+WRITE+EXECUTE+DELETE+CONTROL))

2. If the ACE grants WRITE access then the directory can be written into by any authen-
ticated username for the authorized path.

This example shows a suitable ACE that applies only to the original directory:

$ SET SECURITY directory.DIR -
/ACL=(IDENT=HTTP$SERVER,ACCESS=READ+WRITE+EXECUTE+DELETE)

This example shows setting an ACE that will propagate to created files and importantly,
subdirectories:

$ SET SECURITY directory.DIR -
/ACL=((IDENT=HTTP$SERVER,OPTIONS=DEFAULT,ACCESS=READ+WRITE+EXECUTE+DELETE), -

(IDENT=HTTP$SERVER,ACCESS=READ+WRITE+EXECUTE+DELETE))

To assist with the setting of the required ACEs an example, general-purpose DCL procedure
is provided, WASD_ROOT:[EXAMPLE]AUTHACE.COM.

3.14 Securing All Requests
Some sites may be sensitive enough about Web resources that the possibility of providing
inadvertant access to some area or another is of major concern. WASD provides a facility
that will automatically deny access to any path that does not appear in the authorization
configuration file. This does mean that all paths requiring access must have authorization
rules associated with them, but if something is missed some resource does not unexpectedly
become visible.

At server startup the /AUTHORIZE=ALL qualifier enables this facility.

Authentication and Authorization 3–29

For paths that require authentication and authorization the standard realms and rules apply.
To indicate that a particular path should be allowed access, but that no authorization applies
the ‘‘NONE’’ realm may be used. The following example provides some indication of how it
should be used.

allow the librarian to update this area, world to read it
[VMS;LIBRARIAN=id]
/web/library/* r+w ; read
indicate there is no authorization to be applied
[NONE]
allow access to general web areas
/web/*
allow access to the WASD_ROOT tree
/wasd_root/*

There is also a per-path equivalent of the /AUTHORIZE=ALL functionality, described in
‘‘WASD Web Services - Install and Config’’ . This allows a path tree to be require authorization
be enabled against it.

avoid an absence of authorization allowing unintentional access
set /web/sensitive/* auth=all

3.15 User Password Modification
The server provides for users to be able to change their own HTA passwords (and SYSUAF
if required). This functionality, though desirable from the administrator’s viewpoint, is not
mandatory if the administrator is content to field any password changes, forgotten passwords,
etc. Keep in mind that passwords, though not visible during entry, are passed to the server
using clear-text form fields (which is why SSL is recommended).

Password modification is enabled by including a mapping rule to the internal change script.
For example:

pass /httpd/-/change/* /httpd/-/change/*

Any database to be enabled for password modification must have a writable authorization
path associated with it. For example:

[GROUP=id;GROUP=id]
/httpd/-/change/group/* r+w

[ANOTHER_GROUP=id;ANOTHER_GROUP=id]
/httpd/-/change/another_group/* r+w

Note
What looks like redundancy in specifying an identical realm and group authorization is
what allows multiple, independant identifiers to be individually controlled for password
change (i.e. one group of identifier holders allowed to change the password, another
not).

Use some form of cautionary wrapper if providing this functionality over something other
than an Intranet or SSL connection:

3–30 Authentication and Authorization

<H2>Change Your Authentication</H2>

<blockquote>
Change the password used to identify yourself to the REALM Web environment for
some actions. Note that this <U>not</U> an operating system password, nor has
it anything to do with it. Due to the inherent weaknesses of using
non-encrypted password transmissions on networks <U>DO
NOT</U> use a password you have in use anywhere else, especially an operating
system password! You need your current password to make the change. If
you have forgotten what it is contact WebAdmin,
preferably via e-mail, for the change to be made on your behalf.
</blockquote>

REALM realm.

Password Expiry

When using SYSUAF authentication it is possible for a password to pre-expired, or when
a password lifetime is set for a password to expire and require respecification. By default
an expired password cannot be used for access. This may be overridden using the following
global configuration directive.

[AuthSYSUAFacceptExpPwd] enabled

Expired passwords may be specially processed by specifying a URL with WASD_CONFIG_
GLOBAL [AuthSysUafPwdExpURL] configuration directive (see ‘‘WASD Web Services - In-
stall and Config’’).

The WASD_CONFIG_MAP set auth=sysuaf=pwdexpurl=<string> rule allows the same URL to
be specified on a per-path basis. When this is set a request requiring SYSUAF authentication
that specifies a username with an expired password is redirected to the specified URL. This
should directly or via an explanatory (wrapper) page redirect to the password change path
described above. The password change dialog will have a small note indicating the password
has expired and allows it to be changed.

The following WASD_CONFIG_GLOBAL directive

WASD_CONFIG_GLOBAL
[AuthSysUafPwdExpURL] https:///httpd/-/change/

WASD_CONFIG_AUTH
[WASD_VMS_ID=id;WASD_VMS_RW=id]
/httpd/-/change/* r+w

would allow expired passwords to be changed.

It is also possible to redirect an expired password to a site-specific page for input and change.
This allows some customization of the language and content of the expired password change
dialog. An example document is provided at WASD_ROOT:[EXAMPLE]EXPIRED.SHTML
ready for relocation and customisation. Due to the complexities of passing realm information
and then submitting that information to the server-internal change facility some dynamic
processing is required via an SSI document.

Authentication and Authorization 3–31

This example assumes the site-specific document has been located at WEB:[000000]EXPIRED.SHTML
and is accessed using SSL.

WASD_CONFIG_GLOBAL
[AuthSysUafPwdExpURL] https:///web/expired.shtml?httpd=ignore&realm=vms

WASD_CONFIG_AUTH
[WASD_VMS_ID=id;WASD_VMS_RW=id]
/httpd/-/change/vms/* r+w
/web/expired.shtml r+w

3.16 Cancelling Authorization
The reason authorization information is not required to be reentered on subsequent accesses
to controlled paths is cached information the browser maintains. It is sometimes desirable to
be able to access the same path using different authentication credentials, and correspond-
ingly it would be useful if a browser had a purge authorization cache button, but this is
commonly not the case. To provide this functionality the server must be used to ‘‘trick’’ the
browser into cancelling the authorization information for a particular path.

This is achieved by adding a specific query string to the path requiring cancellation. The
server detects this and returns an authorization failure status (401) regardless of the contents
of request ‘‘Authorization:’’ field. This results in the browser flushing that path from the
authorization cache, effectively requiring new authorization information the next time that
path is accessed.

There are two variations on this mechanism.

1. The basic procedure is as follows:

• Add the query string ‘‘?httpd=logout’’ to the path in question (if there is an existing
query then replace it), as in the following example.

/the/current/path?httpd=logout

• The browser will respond with an authorization failure, and prompting to retry or
reenter the username and password.

• It is necessary to clear at least the password (i.e. remove any password from the
appropriate field) and reenter.

• The browser again responds with an authorization failure.

• At this stage the authorization dialog can be cancelled, resulting in a server autho-
rization failure message.

• The original path can now be returned to and reaccessed. The browser should again
prompt for authorization information at which point different credentials may be
supplied.

2. A little more functional, if using a revalidation period via [AuthRevalidateUserMinutes]
or ’SET auth=revalidate=’ (perhaps set to something like 23:59:00, or one day), when the
logout query string is supplied the server resets the entry forcing any future access to

3–32 Authentication and Authorization

require revalidation. A successful logout message is then generated, circumventing the
need for the username/password dialog described above.

• Add or replace the query string ‘‘?httpd=logout’’ to the path in question as in the
following example.

/the/current/path?httpd=logout

• The browser will respond with a message stating that authentication has been
cancelled. That’s it!

Also when using logout with a revalidation period a redirection URL may be appended
to the logout query string. It then redirects to the supplied URL. It is important that
the redirection is returned to the browser and not handled internally by WASD. Normal
WASD redirection functionality applies.

?httpd=logout&goto=///
?httpd=logout&goto=///help/logout.html
?httpd=logout&goto=http://the.host.name/

These examples redirect to

the local home page
a specific local page
a specific remote server

respectively.

Authentication Cache
User revalidation relies on an entry being maintained in the authentication cache.
Each time the entry is flushed, for whatever reason (cache congestion, command-
line purge, server restart, etc.), the user will be prompted for credentials. It may be
necessary to increase the size of the cache by adjusting [AuthCacheEntriesMax].

Authentication and Authorization 3–33

Chapter 4

Transport Layer Security

Transport Layer Security (TLS), and its predecessor Secure Sockets Layer (SSL), are
cryptographic protocols designed to provide communication privacy over a network, in the
case of HTTP between the browser (client) and the server. It also authenticates server and
optionally client identity. TLS/SSL operates by establishing an encrypted communication path
between the two applications, ‘‘wrapping’’ the entire application protocol inside the secure
link, providing complete privacy for the entire transaction. In this way security-related data
such as user identification and password, as well as sensitive transaction information can
be protected from unauthorized access while in transit. This section is not a tutorial on
TLS/SSL. It contains only information relating to WASD’s use of it. See Section 4.9 for
further information on TLS/SSL technology.

TLS and SSL
The terms are used interchangably in this document to represent cryptographic
communication technology. They are similar but with important differences. TLS
is the more modern and considered the more secure. The term SSL is still in common
usage though and retained here even if (by default) WASD now only implements TLS.
(When OpenSSL(.org) considers changing its name WASD will toss out the term SSL
:-)

WASD implements SSL using a freely available software toolkit supported by the OpenSSL
Project. OpenSSL licensing allows unrestricted commercial and non-commercial use. This
toolkit is in use regardless of whether the WASD OpenSSL package, HP SSL for OpenVMS
product, or other stand-alone OpenSSL environment is installed. It is always preferable
to move to the latest support release of OpenSSL as known bugs in previous versions are
progressively addressed (ignoring the issue of new bugs being introduced ;-)

TLS functionality is not supplied with the basic WASD package
In part this is due to the relative bulk of this component, in further part that the
updates to each are not necessarily coincident, and also considers potential patent
issues and export restrictions on some cryptography technology in some jurisdictions.

Transport Layer Security 4–1

Cryptography Software

Be aware that export/import and/or use of cryptography software, or even just providing
cryptography hooks, is illegal in some parts of the world. When you re-distribute this
package or even email patches/suggestions to the author or other people, please PAY CLOSE
ATTENTION TO ANY APPLICABLE EXPORT/IMPORT LAWS. The author of this
package is not liable for any violations you make here.

Some Thoughts From R. S. Engelschall

Ralf S. Engelschall (rse@engelschall.com) is the author of the popular Apache mod_ssl

package. This section is taken from the mod_ssl read-me and is well-worth some consideration
for this and software security issues in general.

‘‘ You should be very sensible when using cryptography software, because just running an
SSL server DOES NOT mean your system is then secure! This is for a number of reasons.
The following questions illustrate some of the problems.

• SSL itself may not be secure. People think it is, do you?

• Does this code implement SSL correctly?

• Have the authors of the various components put in back doors?

• Does the code take appropriate measures to keep private keys private? To what extent is
your cooperation in this process required?

• Is your system physically secure?

• Is your system appropriately secured from intrusion over the network?

• Whom do you trust? Do you understand the trust relationship involved in SSL certifi-
cates? Do your system administrators?

• Are your keys, and keys you trust, generated careful[ly] enough to avoid reverse engi-
neering of the private keys?

• How do you obtain certificates, keys, and the like, securely?

• Can you trust your users to safeguard their private keys?

• Can you trust your browser to safeguard its generated private key?

‘‘ If you can’t answer these questions to your personal satisfaction, then you usually have a
problem. Even if you can, you may still NOT be secure. Don’t blame the authors if it all goes
horribly wrong. Use it at your own risk! ’’

4.1 Let’s Encrypt
Have (or want) a TLS/SSL secured site?

Using self-signed or commercial server certificate(s)?

Let’s Encrypt makes it possible to obtain and maintain browser-trusted certificates, simply,
automatically and at no cost.

4–2 Transport Layer Security

See WASD Certificate Management Environment (wCME) on the WASD download page at
https://wasd.vsm.com.au/wasd/

4.2 SSL Functionality Sources
Secure Sockets Layer functionality is easily integrated into WASD and is available from one
(or more) of the following sources. See Section 4.3 for the basics of installing WASD SSL and
Section 4.5 for configuration of various aspects.

1. The HP SSL1 for OpenVMS product

Information regarding HP SSL1 (Secure Sockets Layer) for OpenVMS may be found
somewhere within this URL: http://h71000.www7.hp.com/openvms/security.html (though
it’s been a bit of a moving target).
Perhaps here: http://h71000.www7.hp.com/openvms/security.html#ssl
Perhaps from the OpenVMS (top-level) documentation URL: http://www.hp.com/go/openvms/doc

This is provided from the directory SYS$COMMON:[SSL1] containing shared libraries,
executables and templates for certificate management, etc. If this product is installed
and started the WASD installation and update procedures should detect it and provide
the option of compiling and/or linking WASD against its shareable libraries.

2. As a separate, easily integrated WASD OpenSSL package, with OpenSSL object
libraries, OpenSSL utility object modules for building executables and WASD support
files. Currently it is based on both the OpenSSL v1.0.2 and the v1.1.1 code streams (you
choose). The package requires no compilation, only linking, and is available for Alpha
and Itanium for VMS version 7.0 up to current. VAX OpenSSL is no longer current and
therefore considered insecure. Obtain these from the same source as the main package.

WASD OpenSSL installation creates an OpenSSL directory in the source area, WASD_
ROOT:[SRC.OPENSSL-n_n_n], containing the OpenSSL copyright notice, object libraries,
object modules for building executables, example certificates, and some other support files
and documentation.

3. Using a locally compiled and installed OpenSSL toolkit.

The OpenSSL v1.0.2 and the v1.1.0 code streams are supported. API differences means
independent code compilation and linkage for each. WASD requires a 32 bit OpenSSL
build (the default).

To change linkage use step 2 described in Section 4.3 selecting the alternate toolkit build.

OpenSSL v1.1.0 uses the naming schema OSSL$. . . for logical and file names. It also
provides object libraries for a static linked executable, as well as shareable images, for the
two main APIs (SSL and crypto). In common with the HPE SSL1 product, the shareable
images must be installed to be used with the WASD server privileged executable. The
WASD STARTUP.COM procedure will undertake this when directed (see immediately
below).

There is one other consideration. For a privileged executable to activate a shareable
image, not only must the image be installed but any associated logical names must
be defined in executive (or kernel) mode. When executing the OpenSSL v1.1.0 startup
procedure P1 must be ‘‘/SYSTEM/EXECUTIVE’’ as in the following example:

Transport Layer Security 4–3

$ @SYS$COMMON:[OPENSSL.SYS$STARTUP]OPENSSL_STARTUP0101.COM "/SYSTEM/EXECUTIVE"
$ @WASD_ROOT:[STARTUP]STARTUP WASD_OSSL=1

4.3 WASD SSL Quick-Start
SSL functionality can be installed with a new package, or with an update, or it can be added
to an existing non-SSL enabled site. The following steps give a quick outline for support of
SSL.

1. If using the HP SSL1 for OpenVMS product or an already installed OpenSSL toolkit go
directly to step 2. To install the WASD OpenSSL package the ZIP archive needs to be
restored.

• The ZIP archive will contain brief installation instructions. Use the following
command to read this and any other information provided.

$ UNZIP -z device:[dir]archive.ZIP

• Either UNZIP the WASD OpenSSL package into a new installation

$ SET DEFAULT [.WASD_ROOT]
$ UNZIP device:[dir]archive.ZIP

• OR into an existing installation

$ SET DEFAULT WASD_ROOT:[000000]
$ UNZIP device:[dir]archive.ZIP

2. It is then necessary to build the (server and Open)SSL executables.

• If during an original INSTALL or subsequent UPDATE of the entire package the
procedures detect a suitable SSL toolkit and prompt the user whether an SSL enabled
server should be built.

• To to add SSL functionality to an existing but non-SSL site just the SSL components
can be built using the following procedure.

$ @WASD_ROOT:[INSTALL]UPDATE SSL

3. Once linked the UPDATE.COM procedure will prompt for permission to execute the
demonstration/check procedure.

It is also possible to check the SSL package at any other time using the server demon-
stration procedure. It is necessary to specify that it is to use the SSL executable. Follow
the displayed instructions.

$ @WASD_ROOT:[INSTALL]DEMO.COM SSL

4. Modification of server startup procedures should not be necessary. If an SSL image is
detected during startup it will be used in preference to the standard image.

5. Modify the WASD_CONFIG_SERVICE configuration file to specify an SSL service. For
example the following adds a generic SSL service on port 443.

[[https://*:443]]

4–4 Transport Layer Security

6. Shutdown the server completely, then restart.

$ HTTPD /DO=EXIT
$ @WASD_ROOT:[STARTUP]STARTUP

7. To check the functionality (on default ports) access the server via

Standard HTTP

http://the.example.com/

SSL HTTP

https://the.example.com/

8. Once the server has been proved functional with the example certificate it is recommended
that a server-specific certificate be created using the tools described in Section 4.6.1 and
Section 4.6.

4.4 OPENSSL.EXE Application
The OPENSSL.EXE application is a command line tool for using the various cryptography
functions of OpenSSL’s crypto library from the shell. It is described being used several times
in this section of the documentation. Refer to the OpenSSL Man page for descriptions of the
various commands and their syntax.

https://www.openssl.org/docs/manmaster/man1/openssl.html
https://wiki.openssl.org/index.php/Command_Line_Utilities

It is commonly used as a foreign verb on VMS systems and assigned during SYLOGIN.COM
or LOGIN.COM and depends on the distribution and version in use. For example:

$ @SSL1$COM:SSL1$UTILS.COM
$ @SSLROOT:[VMS]OPENSSL_UTILS.COM
$ @OSSL$INSTROOT:[SYS$STARTUP]OPENSSL_UTILS0101.COM

A simple addition to SYLOGIN.COM or LOGIN.COM for WASD-specific OpenSSL kits to
assign the OPENSSL verb is:

$ @WASD_ROOT:[EXAMPLE]WASDVERBS.COM SSL

4.5 SSL Configuration
The example server startup procedure already contains support for the SSL executable. If this
has been used as the basis for startup then an SSL executable will be started automatically,
rather than the standard executable. The SSL executable supports both standard HTTP
services (ports) and HTTPS services (ports). These must be configured using the [service]
parameter. SSL services are distinguished by specifying ‘‘https:’’ in the parameter. The
default port for an SSL service is 443.

WASD can configure services using the WASD_CONFIG_GLOBAL [SSL..] directives, the
per-service WASD_CONFIG_SERVICE [ServiceSSL..] directives, or the /SSL= qualifier.
Configuration precedence is WASD_CONFIG_SERVICE, /SSL= and finally WASD_CONFIG_
GLOBAL.

Transport Layer Security 4–5

4.5.1 WASD_CONFIG_SERVICE

SSL service configuration using the WASD_CONFIG_SERVICE configuration is slightly
simpler, with a specific configuration directive for each aspect. (see ‘‘WASD Web Services
- Install and Config’’). This example illustrates configuring the same services as used in the
previous section.

[[http://alpha.example.com:80]]

[[https://alpha.example.com:443]]
[ServiceSSLversion] TLSvALL
[ServiceSSLcert] WASD_ROOT:[local]alpha.pem

[[https://beta.example.com:443]]
[ServiceSSLversion] SSLv3
[ServiceSSLcert] WASD_ROOT:[local]beta.pem

4.5.2 SSL Versions

As WASD uses the OpenSSL package in one distribution or another it largely supports all
of the capability of that underlying package. The obsolete SSLv2, and the deprecated SSLv3
are no longer accepted by default. WASD default comprise the TLS family of protocols, at the
time of writing, TLSv1, TLSv1.1, TLSv1.2 and TLSv1.3.

Some older clients employing SSLv3 may fail. Symptoms are dropped connection es-
tablishment and WATCH [x]SSL variously showing ‘‘SSL routines SSLn_GET_RECORD
wrong version number’’, ‘‘SSL routines SSLn_GET_CLIENT_HELLO unknown protocol’’,
possibly others. It is generally considered SSL best-practice not to have SSLv3 enabled
but if required may be supported by configuring WASD_CONFIG_GLOBAL [SSLversion]
with ‘‘SSLv3,TLSvALL’’, the per-service WASD_CONFIG_SERVICE equivalent, or using the
/SSL=(SSLv3,TLSvALL) command line parameter during server startup.

TLS Version 1.3

TLSv1.3 perhaps should have been designated TLSv2.0 and not be considered as an incre-
mental improvement over earlier versions of TLS but a significant upgrade!

https://wiki.openssl.org/index.php/TLS1.3

TLSv1.3 can be tested for as demonstrated in Section 4.8.

4.5.3 SSL Ciphers

Ciphers are the algorithms, designed and implemented on mathematical computations, that
render the readable plaintext into unreadable ciphertext. Ciphers tend to be available in
suites (or families) where variants, usually based on key size and therefore resistence to
decryption without a known key, that browsers and otheragents negotiate on and accept
when setting up a secure (encrypted) network transports with servers.

Cipher selection is important to the overall security of the supported environment as well
as the range of clients and servers that can establish communication due to shared cipher
suites. Including only more recent (and technically secure) ciphers can preclude older clients
from establishing secure connection, and including older (and perhaps more susceptible to
modern attack) ciphers increases site vunerability. Some environments, for example HTTP/2,

4–6 Transport Layer Security

are quite prescriptive regarding the secure connection, to the point of blacklisting protocol
versions and cipher suites no longer considered secure enough.

Fortunately a number of sites provide cipher guidelines based on requirements. The Mozilla
Developer Network provides these amongst other useful information on security and server
side TLS.

https://wiki.mozilla.org/Security/Server_Side_TLS#Recommended_configurations

WASD has a default (built-in) functional cipher list that is general in application and relevant
to when it was compiled. This in particular and site cipher lists in general, should be reviewed
from time to time as opinions and requirements do change.

Many agents (browsers) require the elliptic curve ciphers provided by Forward Secrecy
elements (Section 4.5.5) to negotiate later TLS versions.

4.5.4 (Open)SSL Options

The OpenSSL package provides for various options to be flagged against an TLS/SSL service.
WASD sets the (OpenSSL) default options and then allows these to be overwitten/set/reset
using hexadecimal values representing bit patterns. OpenSSL defaults are suitable for most
sites.

The SSL options directives in global and per-service configuration, and the OPTIONS=
keyword for the /SSL= qualifier, accept

• 0xXX - overwrite the options field

• +0xXX - set (logical OR) the specified bit(s)

• -0xXX - reset (logical AND) the specified bit(s)

Alternatively, the following OpenSSL option mnemonics can be used with a leading ‘‘+’’ to
enable, or ‘‘-’’ to disable

OP_ALL
OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION
OP_CIPHER_SERVER_PREFERENCE
OP_LEGACY_SERVER_CONNECT
OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION
OP_NO_TICKET
OP_SINGLE_DH_USE
OP_TLS_ROLLBACK_BUG

4.5.5 Forward Secrecy

Forward secrecy, sometimes known as perfect forward secrecy (PFS), is a property of key-
agreement protocols ensuring that a session key derived from a set of long-term keys cannot
be compromised if one of the long-term keys is compromised in the future.

http://en.wikipedia.org/wiki/Forward_secrecy

OpenSSL supports forward secrecy using Diffie-Hellman key exchange with elliptic curve
cryptography and this relies on generating emphemeral keys based on unique, safe prime
numbers. These are expensive to generate and so this is done infrequently, often during
software build or installation. In the case of WASD, to maximise flexibility, these numbers
are stored in external PEM-format files, by default located in the WASD_ROOT:[LOCAL]

Transport Layer Security 4–7

directory. These files are only briefly accessed during server startup SSL initialisation and
the content later used during network connection SSL negotiation to generate the required
ephemeral keys.

PFS requires a small number of elements working in concert

• Ephemeral key generation

• Selection and ordering of server ciphers

• Ensuring the server determines the cipher used (+OP_CIPHER_SERVER_PREFERENCE)

The detail is described in these references

https://community.qualys.com/blogs/securitylabs/2013/06/25/ssl-labs-deploying-forward-secrecy
https://community.qualys.com/blogs/securitylabs/2013/08/05/configuring-apache-nginx-and-
openssl-for-forward-secrecy

NOTE

Ephemeral keys are supported beginning with WASD v10.4.1.

Executing the WASD OpenSSL procedure

$ @CREATE_EPHEMERAL_DH_PARAM

will generate site-unique files containing 512, 1024 and 2048 bit primes, and optionally copy
those files to the WASD_ROOT:[LOCAL] directory. The [.CERT] directory contains files that
could be used but unique, locally generated primes are preferable.

Alternatively, generated directly at the command-line using the OpenSSL dhparam utility,
as in these examples;

$ openssl dhparam -out dh_param_512.pem 512
$ openssl dhparam -out dh_param_1024.pem 1024
$ openssl dhparam -out dh_param_2048.pem 2048

NOTE

Key generation can take some considerable time!

The file(s) must be located in the WASD_ROOT:[LOCAL] directory and the file names use the
format DH_PARAM_number-of-bits.PEM

Alternatively, files containing emphemeral keys generated freshly with each release, may be
copied from the WASD OpenSSL package using

$ COPY WASD_ROOT:[SRC.OPENSSL-n_n_n.WASD.CERT]DH_PARAM_*.PEM WASD_ROOT:[LOCAL]

4–8 Transport Layer Security

4.5.6 Session Resumption

When a TLS/SSL connection is initiated an expensive handshake (in terms of time and
compute) is required to establish the cryptographic and other elements of the connection.
Mitigation of this expense is undertaken by allowing the resumption of a previous session
(abbreviating the handshake exchanges) using connection state stored either at the server or
at the client.

• Session Ticket

This TLS extension provides the connection state to the client, encrypted with keys
available only to the server. The client stores the (encrypted) state and when (re-
)connecting to the server provides that ticket in the initial part of the handshake. The
server decrypts the ticket and if valid expedites the connection by resuming the previously
negotiated session. This is the more modern, almost universally supported mechanism
and is generally enabled by default.

Session tickets introduce a potential vulnerability to TLS security, in particular to the
benefits of Forward Secrecy (PFS). If the ticket can be compromised, through theft of the
keys or brute-force decryption attack, the entire session becomes vulnerable to attack. It
is therefore advised to periodically rotate (change) the keys used by the server to encrypt
the tickets. WASD does this every (RFC recommended) 24 hours, at midnight (local time).

Where a site is provided by multiple servers and connections distributed between these,
session resumption using tickets relies on each server using the same keys. The current
keys must be distributed to each server (using a secure mechanism) and this performed
every time the keys are rotated. WASD uses the DLM to perform this for multiple per-
node and cluster-wide instances as applicable.

• Session ID

In a full handshake the server sends a Session ID (unique, non-repeating value) as part
of the handshake. On a subsequent connection the client can pass this session ID back
to the server when connecting. To support session resumption via session IDs the server
must maintain a cache that maps past session IDs to those sessions’ states. The cache
has limited capacity and is expensive for the server to maintain. If the session ID is still
available in the cache the session can be resumed. This is the original session resumption
mechanism.

Where a single WASD instance is involved the session cache is implemented in-memory.
With multiple instances on a single node it is provided across those instances using a
shared global section. The cacpacity of this shared cache is determined by the WASD_
CONFIG_GLOBAL directives [SSLinstanceCacheMax] and [SSLinstanceCacheSize] di-
rectives. There is no cluster-wide session cache. When multiple instances are in use the
shared session cache is enabled by default. Session ID caching may be globally disabled
by setting [SSLsessionCacheMax] to -1.

With Session Tickets being the more modern, flexible and efficient solution to session
resumption (and being available cluster-wide) it is recommended that WASD sites disable
Session ID caching.

The default maximum period for session reuse is five minutes. This may be set globally
using the [SSLsessionLifetime] directive or on a per-service basis using [ServiceSSLsession-
Lifetime].

Transport Layer Security 4–9

To some extent, the relatively long-lived connections and lower concurrency with HTTP/2
means the importance of session resumption in improving request latency and connection
overhead is reduced.

4.5.7 Strict Transport Security

HTTP Strict Transport Security (HSTS) is a security policy mechanism which helps protect
sites against protocol downgrade attack and cookie hijacking. It allows web servers to declare
that browsers and other complying agents should only interact using secure (TLS) HTTP
connections and never via clear-text HTTP. HSTS is an IETF standard specified in RFC
6797.

When global configuration directive [SSLstrictTransSec] is non-zero, or per-service configura-
tion directive [ServiceSSLstrictTransSec] is non-zero, or a path is SET response=sts=<value>,
TLS/SSL HTTP responses include a ‘‘Strict-Transport-Security: max-age=seconds’’ header
field. Conforming agents note this period and refuse to communicate with the site via clear-
text HTTP for the period represented by the integer number of seconds specified.

4.5.8 SSL Server Certificate

The server certificate is used by the browser to authenticate the server against the server
certificate Certificate Authority (CA), in making a secure connection, and in establishing a
trust relationship between the browser and server. By default this is located using the WASD_
CONFIG_GLOBAL [SSLcert] or WASD_CONFIG_SERVICE [ServiceSSLcert] configuration
directive, the WASD_CONFIG_SSL_CERT logical name, or using the /SSL= command-line
qualifier, however if required. Each SSL service can have an individual certificate configured
as in the example above.

4.5.9 SSL Private Key

The private key is used to validate and enable the server certificate. A private key is enabled
using a secret, a password. It is common practice to embed this (encrypted) password within
the private key data. This private key can be appended to the server certificate file, or it can
be supplied separately. If provided separately it can be located using the WASD_CONFIG_
GLOBAL [SSLkey] or WASD_CONFIG_SERVICE [ServiceSSLkey] configuration directive,
tor using the WASD_CONFIG_SSL_KEY logical. When the password is embedded in the
private key information it becomes vulnerable to being stolen as an enabled key. For this
reason it is possible to provide the password separately and manually.

If the password key is not found with the key during startup the server will request that it be
entered at the command-line. This request is made via the HTTPDMON ‘‘STATUS:’’ line (see
‘‘WASD Web Services - Install and Config’’), and if any OPCOM category is enabled via an
operator message. If the private key password is not available with the key it is recommended
that OPCOM be configured, enabled and monitored at all times.

When a private key password is requested by the server it is supplied using the
/DO=SSL=KEY=PASSWORD directive (Section 9.7). This must be used at the command line
on the same system as the server is executing. The server then prompts for the password.

Enter private key password []:

The password is not echoed. When entered the password is securely supplied to the server
and startup progresses. An incorrect password will be reprompted for twice (i.e. up to three

4–10 Transport Layer Security

attempts are allowed) before the startup continues with the particular service not configured
and unavailable. Entering a password consisting of all spaces will cause the server to abort
the full startup and exit from the system.

4.5.10 SSL Virtual Services

Multiple virtual SSL services (https:) sharing the same or individual certificates (and other
characteristics) can essentially be configured against any host name (unique IP address or
host name alias) and/or port in the same way as standard services (http:).

WASD SSL implements Server Name Indication (SNI), an extension to the TLS protocol
that indicates what hostname the client is attempting to connect to at the start of the
handshaking process. This allows a server to present multiple certificates on the same IP
address and port number and hence allows multiple secure (HTTPS) websites (or any other
Service over TLS) to be served off the same IP address without requiring all those sites to
use the same certificate.

When the client presents an SNI server name during SSL connection establishment, WASD
searches the list of services it is offering for an SSL service (the first hit) operating with a
name matching the SNI server name. If matched, the SSL context (certificate, etc.) of that
service is used to establish the connection. If not matched, the service the TCP/IP connection
originally arrived at is used.

4.5.11 SSL Access Control

When authorization is in place (Chapter 3) access to username/password controlled
data/functionality benefits enormously from the privacy of an authorization environment in-
herently secured via the encrypted communications of SSL. In addition there is the possibility
of authentication via client X.509 certification (Section 4.5.12). SSL may be used as part of
the site’s access control policy, as whole-of-site, see Section 3.2, or on a per-path basis (see
‘‘WASD Web Services - Install and Config’’).

4.5.12 Authorization Using X.509 Certification

The server access control functionality (authentication and authorization) allows the use of
public key infrastructure (PKI) X.509 v3 client certificates for establishing identity and based
on that apply authorization constraints. See Chapter 3 for general information on WASD
authorization and Section 3.4 for configuring a X509 realm. Section 4.9 provides introductory
references on public-key cryptography and PKI.

A client certificate is stored by the browser. During an SSL transaction the server can
request that such a certificate be provided. For the initial instance of such a request the
browser activates a dialog requesting the user select one of any certificates it has installed.
If selected it is transmitted securely to the server which will usually (though optionally not)
authenticate its Certificate Authority to establish its integrity. If accepted it can then be used
as an authenticated identity. This obviates the use of username/password dialogs.

Important
Neither username/password nor certificate-based authentication addresses security
issues related to access to individual machines and stored certificates, or to password
confidentiality. Public-key cryptography only verifies that a private key used to sign

Transport Layer Security 4–11

some data corresponds to the public key in a certificate. It is a user responsibility to
protect a machine’s physical security and to keep private-key passwords secret.

The initial negotiation and verification of a client certificate is a relatively resource intensive
process. Once established however, OpenSSL sessions are usually either stored in a cache
or stored encrypted withing the client, reducing subsequent request overheads significantly.
Each session has a specified expiry period after which the client is forced to negotiate a
new session. This period is adjustable using the ‘‘[LT:integer]’’ and ‘‘[TO:integer]’’ directives
described below.

4.5.13 X.509 Certificate Renegotiation

An X.509 client certificate is requested at either TLS/SSL connection establishment (WASD_
CONFIG_GLOBAL [SSLverifyPeer], WASD_CONFIG_SERVICE [ServiceSSLverifyPeer]) or
once the request has been made and assessed against authorisation rules. If an X509 realm
controls access to the resources then the TLS/SSL connection is queried for an X.509 client
certificate to authenticate the client and authorise the access.

This is performed via a TLS/SSL renegotiation and for this the connection must have been
cleared of request data. In the case of a HEAD, GET, OPTIONS, etc. request, this already has
implicitly occurred by there being no request body. For POST, PROPFIND, PUT, etc. requests,
the client most likely already will be transmitting the request body. This (application data)
must be absorbed before the client certificate renegotiation can be performed.

In avoiding disruption to the current request, any request body must be buffered (in full, based
on the content length specified in the header) before issuing the renegotiation. This consumes
memory and potentially large quantities. The default maximum buffer space is 1MB. The
maximum request body size and hence maximum memory accomodated can be configured
using the per-service WASD_CONFIG_SERVICE [ServiceSSLverifyDataMax] directive, or the
global WASD_CONFIG_GLOBAL configuration directive [SSLverifyDataMax].

Where a request with a body exceeds the maximum allowed buffer space the authorisation
fails. This can be observed using WATCH. Where very large files are being sent the only
solution is to first authenticate with a request without a body (e.g. using OPTIONS) then
using the persistent connection and associated X.509 authentication perform the PUT or
POST.

4.5.14 Features

WASD provides a range of capabilities when using X.509 client certificates.

• By Service - all SSL connections to such a service will be requested to supply a client
certificate during the initial SSL handshake. This is more efficient than requesting later
in the transaction, as happens with per-resource authorization. A client cannot connect
successfully to this type of service without supplying an acceptable certificate.

• By Resource - using authorization rules in the WASD_CONFIG_AUTH file specifying
a path against an [X509] realm causes the server to suspend request processing and
renegotiate with the client to supply a certificate. If a suitable certificate is supplied
the request authorization continues with normal processing. This obviously incurs an
additional network transaction.

4–12 Transport Layer Security

• Optional access control - once an acceptable certificate is supplied it can be subject
to further access control by matching against its contents. The Issuer (CA) and the
Subject (client) Distinguished Name (DN) has various components including the name
of the organization providing the certificate (e.g. ‘‘VeriSign’’, ‘‘Thawte’’), location, common
name, email address, etc. Those certificates matching or not matching the parameters
are allowed or denied access.

• Certificate verification - by default supplied certificates have their CA verified by
comparing to a list of recognised CA certificates stored in a server configuration file. If
the CA component of the client certificate cannot be verified the connection is terminated
before the HTTP request can begin. Although this is obviously required behaviour for
authentication there may be other circumstances where verification is not required, a
certificate content display service for instance. WASD optionally allows non-verified
certificates to be used on a per-resource basis.

• ‘‘Fingerprint’’ REMOTE_USER - when a certificate is accepted by the server it
generates a unique fingerprint of the certificate. By default, this 32 digit hexadecimal
number is used by the server as an effective username, one that would normally be
supplied via a username/password dialog (as an alternative see the section immediately
below). This effective username becomes that available via the CGI variable REMOTE_
USER. Although a 32 digit number is not particularly site-administrator friendly it is a
unique representation (MD5 digest) of the individual certificate and can be used in WASD_
CONFIG_AUTH access-restriction directives and included in group lists and databases
for full WASD authorization control.

• CN/DN record REMOTE_USER - provides an alternative to using a ‘‘fingerprint’’
REMOTE_USER. Using the [RU:/record=] conditional (see below) is becomes possible
to specify that the remote-user string be obtained from the specified record of the client
certificate subject field. Note that there is a (fairly generous) size limitation on the user
name and that any white-space in such a record is converted to underscores. Although
any record can be used the more obvious candidates are /O=, /OU=, /CN=, /S=, /UID= and
/EMAIL=. Note that (even with the default CA verfication) the certificate CAs that this
is possible against should be further constrained through the use of a [IS:/record=string]
conditional (see example below).

• Subject Alternative Name REMOTE_USER - a common X509 V3 extension for
providing identifying data in a certificate, can also be used to derive the remote user
string.

• X509 extension REMOTE_USER - the content of any other extension field suitably
filtered.

4.5.15 Subject Alternative Name and Other Extensions

The basic syntax for this field is the full extension name, and the short-hand equivalent.

[X509]
/VMS/* r+w,param="[ru:X509v3_subject_Alternative_Name]"
/VMS/* r+w,param="[ru:X509v3_SAN]"

Transport Layer Security 4–13

The Subject Alternative Name (SAN) extension (in common with many others) may contain
multiple data elements, each with a leading name, a colon, and a (if multi line) carriage-
control terminated value. WASD parses these into unqiue fields using keywords fixed in func-
tion SesolaCertKeyword() and the site configurable logical name WASD_X509_EXTENSION_
KEYWORDS value. To select one of these fields, for example the common (Microsoft) user
principal name (UPN), append the required field name to the extension name as shown in the
following example (includes "shorthand" equivalents, along with the underscore and equate
variants). Note that the identifying name match is not case sensitive.

[X509]
/VMS/* r+w,param="[ru:X509V3_Subject_Alternative_Name_UserPrincipalName]"
/VMS/* r+w,param="[ru:X509V3_Subject_Alternative_Name=UserPrincipalName]"
/VMS/* r+w,param="[ru:X509v3_SAN_UPN]"
/VMS/* r+w,param="[ru:X509v3_SAN=UPN]"
/VMS/* r+w,param="[ru:X509V3_Subject_Alternative_Name_rfc822Name]"
/VMS/* r+w,param="[ru:X509V3_Subject_Alternative_Name=rfc822Name]"
/VMS/* r+w,param="[ru:X509v3_SAN_822]"
/VMS/* r+w,param="[ru:X509v3_SAN=822]"

Object Identifiers (OIDs) may be used for either record and field name (if an unknown
otherName) by prefixing with ‘‘OID_’’. For example, the SAN may be alternatively selected,
and the (Microsoft) UPN, as in the following examples.

/VMS/* r+w,param="[ru:OID_2_5_29_17]"
/VMS/* r+w,param="[ru:OID_2_5_29_17_UPN]"
/VMS/* r+w,param="[ru:OID_2_5_29_17=UPN]"
/VMS/* r+w,param="[ru:X509v3_SAN_OID_1_3_6_1_20_2_3]"
/VMS/* r+w,param="[ru:X509v3_SAN_OID=1_3_6_1_20_2_3]"

Extension Visibility

X509 certificate extensions are in general visible from WATCH and accessible via CGI
variables (when enabled using SET SSLCGI=apache_mod_ssl_extens and SSLCGI=apache_

mod_ssl_client path mappings). The identifying names derived from X509 extensions are
built of the alphanumerics in the element names. Non-alphanumerics (e.g. spaces) have
underscores substituted. Multiple underscores are compressed into singles. Where elements
have identical names the first multiple has TWO underscores and the digit two appended,
the second mutiple, two underscores and three appended, etc.

4.5.16 X509 Configuration

Of course, the WASD OpenSSL component must be installed and in use to apply client X.509
certificate authorization. There is general server setup, then per-service and per-resource
configuration.

General Setup

Client certificate authorization has reasonable defaults. If some aspect requires site refine-
ment the WASD_CONFIG_GLOBAL [SSL..] directives (see ‘‘WASD Web Services - Install
and Config’’) or command-line /SSL= qualifier parameters can provide per-server defaults.

• (CACHE=integer) sets the session size (128 entries by default)

4–14 Transport Layer Security

• (CAFILE=file-name) sets the location of the CA verification store file (also can be set via
WASD_CONFIG_SSL_CAFILE logical).

• (TIMEOUT=integer) sets the session expiry period in minutes (5 by default)

• (VERIFY=integer) sets the depth to which client certificate CAs are verified (default is
10)

The location of the CA verification file can also be determined using the logical name WASD_
CONFIG_SSL_CAFILE. The order of precedence for using these specifications is

1. per-service configuration using WASD_CONFIG_SERVICE or WASD_CONFIG_GLOBAL

2. per-server using /SSL=CAFILE=filename

3. per-server using WASD_CONFIG_SSL_CAFILE

By Service

The WASD_CONFIG_SERVICE directive is provided for per-service CA file specification, if
necessary allowing different services to accept a different mix of CAs.

[[https://the.example.com:443]]
[ServiceSSLVerifyPeer] enabled
[ServiceSSLVerifyPeerCAfile] WASD_ROOT:[LOCAL]CA_THE_HOST_NAME.TXT

By Resource

Client certificate authorization is probably most usefully applied on a per-resource (per-
request-path) basis using WASD_CONFIG_AUTH configuration file rules. Of course, per-
resource control also applies to services that always require a client certificate (the only
difference is the certificate has already been negotiated for during the initial connection
handshake). The reserved realm name ‘‘X509’’ activates client certificate authentication when
a rule belonging to that realm is triggered. The following example shows such a rule providing
read access to those possessing any verified certificate.

[X509]
/path/requiring/cert/* r

Optional directives may be supplied to the X.509 authenticator controlling what mode the
certificate is accepted in, as well a further access-restriction rules on specifically which
certificates may or may not be accepted for authorization. Such directives are passed via
the ‘‘param=’’ mechanism. The following real-life example shows a script path requiring
a mandatory certificate, but not necessarily having the CA verified. This would allow a
certificate display service to be established, the ‘‘[to:EXPIRED]’’ directive forcing the client to
explicitly select a certificate with each access.

[X509]
/cgi-bin/client_cert_details r,param="[vf:OPTIONAL][to:EXPIRED]"

A number of such directives are available controlling some aspects of the certificate negoti-
ation and verification. The ‘‘[LT:integer]’’ directive causes a verified certificate selection to
continue to be valid for the specified period as long as requests continue during that period
(lifetime is reset with each access).

• [DP:integer] verify certificate CA chain to this depth (default 10)

Transport Layer Security 4–15

• [LT:integer] verified certificate lifetime in minutes (disabled by default)

• [RU:/record=] derive the remote-user name from the specified certificate subject field DN
record

• [TO:integer] session cache entry timeout in minutes (default 5)

• [TO:EXPIRED] session cache entry is forced to expire (initating renegotiation)

• [VF:NONE] no certificate is required (any existing is cancelled)

• [VF:OPTIONAL] certificate is required, CA verification is not required

• [VF:REQUIRED] the certificate must pass CA verification (the default)

Optional ‘‘param=’’ passed conditionals may also be used to provide additional filtering on
which certificates may or may not be used against the particular path. This is based on
pattern matching against client certificate components.

• [CI:string] transaction cipher

• [IS:/record=string] specified Issuer (CA) DN record only

• [IS:string] entire Issuer (CA) DN

• [KS:integer] minimum key size

• [SU:/record=string] specified Subject (client) DN record only

• [SU:string] entire Subject (client) DN

These function and can be used in a similar fashion to mapping rule conditionals (see ‘‘WASD
Web Services - Install and Config’’ document, ‘‘Conditional Configuration’’ section). This
includes the logical ORing, ANDing and negating of conditionals. Asterisk wildcards match
any zero or more characters, percent characters any single character. Matching is case-
insensitive.

Note that the ‘‘IS:’’ and ‘‘SU:’’ conditionals each have a specific-record and an entire-field

mode. If the conditional string begins with a slash then it is considered to be a match against
a specified record contents within the field. If it begins with a wildcard then it is matched
against the entire field contents. Certificate DN records recognised by WASD,

/C= countryName
/ST= stateOrProvinceName
/SP= stateOrProvinceName
/L= localityName
/O= organizationName
/OU= organizationalUnitName
/CN= commonName
/T= title
/I= initials
/G= givenName
/S= surname
/D= description
/UID= uniqueIdentifier
/Email= pkcs9_emailAddress

4–16 Transport Layer Security

The following (fairly contrived) examples provide an illustration of the basics of X509
conditionals. When matching against Issuer and Subject DNs some knowlege of their contents
and structure is required (see Section 4.9 for some basic resources).

[X509]
only give "VeriSign"ed ones access
/controlled/path1/* r+w,param="[IS:/O=VeriSign\ Inc.]"
only give non-"VeriSign"ed ones access
/controlled/path2/* r+w,param="[!IS:/O=VeriSign\ Inc.]"
only allow 128 bit keys using RC4-MD5 access
/controlled/path3/* r+w,param="[KS:128][CI:RC4-MD5]"
only give a "Thawte"-signed client based in Australia
with the following email address access
/controlled/path4/* r+w,param="\
[IS:*/O=Thawte\ Consulting\ cc/*]\
[SU:*/C=AU/*/Email=mark.daniel@wasd.vsm.com.au*]"
use the subject DN common-name record as the remote-user name
furthermore, restrict the CA’s allowed to be used this way
/VMS/* r+w,param="[RU:/CN=][IS:/O=WASD\ CA\ Cert]"

Of course, access control via group membership is also available. The effective username for
the list is the 32 digit fingerprint of the client certificate (shown as REMOTE_USER IN the
first example of Section 4.5.18), or the Subject DN record as specified using the [RU:/record=]
directive. This may be entered into simple lists as part of a group of which membership
then controls access to the resource. The following examples show the contents of simple list
files containing the X.509 fingerprints, derived remote-user names, and the required WASD_
CONFIG_AUTH realm entries.

FINGERPRINTS.$HTL
(a file of X.509 fingerprints for access to "/path/requiring/cert/")
106C8342890A1703AAA517317B145BF7 mark.daniel@wasd.vsm.com.au
6ADA07108C20338ADDC3613D6D8B159D just.another@where.ever.com

CERT_CN.$HTL
(a file of X.509 remote-user names derived using [RU:/CN=]
Mark_Daniel mark.daniel@wasd.vsm.com.au
Just_Another just.another@where.ever.com

[X509;FINGERPRINTS=list]
/path/requiring/cert/* r+w

[X509;CERT_CN=list]
/path/requiring/cn/* r+w

In a similar fashion the effective username can be placed in an access restriction list. The
following configuration would only allow the user of the certificate access to the specified
resources. Other verified certificate holders would be denied access.

[X509]
/httpd/-/admin/* ~106C8342890A1703AAA517317B145BF7,r+w
/wasd_root/local/* ~106C8342890A1703AAA517317B145BF7,r+w

/other/path/* ~Mark_Daniel,r+w,param="[ru:/cn=]"
/yet/another/path/* ~Just_Another,r+w,param="[ru:/cn=]"

Transport Layer Security 4–17

4.5.17 Certificate Authority Verification File

For the CA certificate component of the client certificate to be verified as being what it claims
to be (and thus establishing the integrity of the client certificate) a list of such certificates must
be provided for comparison purposes. For WASD this list is contained in a single, plain-text
file variously specified using either the WASD_CONFIG_SSL_CAFILE logical or per-service
‘‘[ServiceSSLclientCAfile]’’ directives, or the global [SSLverifyPeerCAFile] directive.

Copies of CA certificates are available for such purposes. The PEM copies (base-64 encoded
versions of the binary certificate) can be placed into this file using any desired text editor.
Comments may be inserted by prefixing with the ‘‘#’’ character. For WASD this would be best
stored in the WASD_ROOT:[LOCAL] directory, or site equivalent.

An example of how such a file appears is provided below (bulk of the file has been 8< snipped
8< for bevity).

##
Bundle of CA Root Certificates
##
Certificate data from Mozilla as of: Wed Jan 18 04:12:05 2017 GMT
##
This is a bundle of X.509 certificates of public Certificate Authorities
(CA). These were automatically extracted from Mozilla’s root certificates
file (certdata.txt). This file can be found in the mozilla source tree:
https://hg.mozilla.org/releases/mozilla-release/raw-file/default/security/nss/lib/ckfw/builtins/certdata.txt
##
It contains the certificates in PEM format and therefore
can be directly used with curl / libcurl / php_curl, or with
an Apache+mod_ssl webserver for SSL client authentication.
Just configure this file as the SSLCACertificateFile.
##
Conversion done with mk-ca-bundle.pl version 1.27.
SHA256: dffa79e6aa993f558e82884abf7bb54bf440ab66ee91d82a27a627f6f2a4ace4
##

GlobalSign Root CA
==================
-----BEGIN CERTIFICATE-----
MIIDdTCCAl2gAwIBAgILBAAAAAABFUtaw5QwDQYJKoZIhvcNAQEFBQAwVzELMAkGA1UEBhMCQkUx
GTAXBgNVBAoTEEdsb2JhbFNpZ24gbnYtc2ExEDAOBgNVBAsTB1Jvb3QgQ0ExGzAZBgNVBAMTEkds
b2JhbFNpZ24gUm9vdCBDQTAeFw05ODA5MDExMjAwMDBaFw0yODAxMjgxMjAwMDBaMFcxCzAJBgNV
BAYTAkJFMRkwFwYDVQQKExBHbG9iYWxTaWduIG52LXNhMRAwDgYDVQQLEwdSb290IENBMRswGQYD
VQQDExJHbG9iYWxTaWduIFJvb3QgQ0EwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDa
DuaZjc6j40+Kfvvxi4Mla+pIH/EqsLmVEQS98GPR4mdmzxzdzxtIK+6NiY6arymAZavpxy0Sy6sc
THAHoT0KMM0VjU/43dSMUBUc71DuxC73/OlS8pF94G3VNTCOXkNz8kHp1Wrjsok6Vjk4bwY8iGlb
Kk3Fp1S4bInMm/k8yuX9ifUSPJJ4ltbcdG6TRGHRjcdGsnUOhugZitVtbNV4FpWi6cgKOOvyJBNP
c1STE4U6G7weNLWLBYy5d4ux2x8gkasJU26Qzns3dLlwR5EiUWMWea6xrkEmCMgZK9FGqkjWZCrX
gzT/LCrBbBlDSgeF59N89iFo7+ryUp9/k5DPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBRge2YaRQ2XyolQL30EzTSo//z9SzANBgkqhkiG9w0BAQUF
AAOCAQEA1nPnfE920I2/7LqivjTFKDK1fPxsnCwrvQmeU79rXqoRSLblCKOzyj1hTdNGCbM+w6Dj
Y1Ub8rrvrTnhQ7k4o+YviiY776BQVvnGCv04zcQLcFGUl5gE38NflNUVyRRBnMRddWQVDf9VMOyG
j/8N7yy5Y0b2qvzfvGn9LhJIZJrglfCm7ymPAbEVtQwdpf5pLGkkeB6zpxxxYu7KyJesF12KwvhH
hm4qxFYxldBniYUr+WymXUadDKqC5JlR3XC321Y9YeRq4VzW9v493kHMB65jUr9TU/Qr6cf9tveC
X4XSQRjbgbMEHMUfpIBvFSDJ3gyICh3WZlXi/EjJKSZp4A==
-----END CERTIFICATE-----
8< snip 8<

4–18 Transport Layer Security

The WASD OpenSSL package provides an example CA verification file. The exact date and
source can be found in the opening commentary of the file itself. The contents of this file
easily can be pared down to the minimum certificates required for any given site.

The bundle may be refreshed at any time using any reliable source. The cURL project provides
such a resource suitable for its own use, Apache mod_ssl and WASD. This is sourced from the
root certificates used by the Mozilla Foundation for its Firefox product (and others). Mozilla
uses a non-PEM format source which must be converted before use by WASD. The cURL site
provides this already converted for use with its own utility and made available as a general
resource.

http://curl.haxx.se/
http://curl.haxx.se/docs/caextract.html

Download the bundle using a command-line tool as in this example

$ curl -o ca-bundle_crt.txt https://curl.haxx.se/ca/cacert.pem

or as a save-as dialogue click from your favourite browser and then a transfer onto the VMS
system.

https://curl.haxx.se/ca/cacert.pem

4.5.18 X.509 Authorization CGI Variables

CGI variables specific to client certificate authorization are always generated for use by scripts
and SSI documents. These along with the general WASD authorization variables are shown
in the example below. Note, that due to length of particular items some in this example are
displayed wrapped.

WWW_AUTH_ACCESS == "READ+WRITE"
WWW_AUTH_GROUP == ""
WWW_AUTH_REALM == "X509"
WWW_AUTH_REALM_DESCRIPTION == "X509 Client Certs"
WWW_AUTH_TYPE == "X509"
WWW_AUTH_USER == "Mark Daniel, mark.daniel@wasd.vsm.com.au"
WWW_AUTH_X509_CIPHER == "RC4-MD5"
WWW_AUTH_X509_FINGERPRINT == "10:6C:83:42:89:0A:17:03:AA:A5:17:31:7B:14:5B:F7"
WWW_AUTH_X509_ISSUER == "/O=VeriSign, Inc./OU=VeriSign Trust
Network/OU=www.verisign.com/repository/RPA Incorp. By
Ref.,LIAB.LTD(c)98/CN=VeriSign Class 1 CA Individual Subscriber-Persona Not
Validated"
WWW_AUTH_X509_KEYSIZE == "128"
WWW_AUTH_X509_SUBJECT == "/O=VeriSign, Inc./OU=VeriSign Trust
Network/OU=www.verisign.com/repository/RPA Incorp. by
Ref.,LIAB.LTD(c)98/OU=Persona Not Validated/OU=Digital ID Class 1 - Netscape
/CN=Mark Daniel/Email=mark.daniel@wasd.vsm.com.au"
WWW_REMOTE_USER == "106C8342890A1703AAA517317B145BF7"

Other CGI variables optionally may be enabled using WASD_CONFIG_MAP mapping rules.
See Section 4.7. Specific client certificate variables providing the details of such certificates
are available with SSLCGI=apache_mod_ssl. These are of course in addition to the more
general apache_mod_ssl variables described in the above section. Note that where some
ASN.1 records are duplicated (as in SSL_CLIENT_S_DN) some variables will contain newline
characters (0x10) between those elements (e.g. SSL_CLIENT_S_DN_OU). The line breaks in
this example do not necesarily reflect those characters.

Transport Layer Security 4–19

WWW_SSL_CLIENT_A_KEY == "rsaEncryption"
WWW_SSL_CLIENT_A_SIG == "md5WithRSAEncryption"
WWW_SSL_CLIENT_I_DN == "/O=VeriSign, Inc./OU=VeriSign Trust Network
/OU=www.verisign.com/repository/RPA Incorp. By Ref.,LIAB.LTD(c)98
/CN=VeriSign Class 1 CA Individual Subscriber-Persona Not Validated"
WWW_SSL_CLIENT_I_DN_CN == "VeriSign Class 1 CA Individual Subscriber-Persona
Not Validated"
WWW_SSL_CLIENT_I_DN_O == "VeriSign, Inc."
WWW_SSL_CLIENT_I_DN_OU == "VeriSign Trust Network
www.verisign.com/repository/RPA Incorp. By Ref.,LIAB.LTD(c)98"
WWW_SSL_CLIENT_M_SERIAL == "0BF233D4FE232A90F3F98B2CE0D7DADA"
WWW_SSL_CLIENT_M_VERSION == "3"
WWW_SSL_CLIENT_S_DN == "/O=VeriSign, Inc./OU=VeriSign Trust Network
/OU=www.verisign.com/repository/RPA Incorp. by Ref.,LIAB.LTD(c)98
/OU=Persona Not Validated/OU=Digital ID Class 1 - Netscape
/CN=Mark Daniel/Email=mark.daniel@wasd.vsm.com.au"
WWW_SSL_CLIENT_S_DN_CN == "Mark Daniel"
WWW_SSL_CLIENT_S_DN_EMAIL == "mark.daniel@wasd.vsm.com.au"
WWW_SSL_CLIENT_S_DN_O == "VeriSign, Inc."
WWW_SSL_CLIENT_S_DN_OU == "VeriSign Trust Network
www.verisign.com/repository/RPA Incorp. by Ref.,LIAB.LTD(c)98
Persona Not Validated.Digital ID Class 1 - Netscape"
WWW_SSL_CLIENT_V_END == "Feb 10 23:59:59 2001 GMT"
WWW_SSL_CLIENT_V_START == "Dec 12 00:00:00 2000 GMT"

4.6 Certificate Management
This is not a tutorial on X.509 certificates and their management. Refer to the listed
references, Section 4.9, for further information on this aspect. It does provide some basic
guidelines.

Certificates identify something or someone, associating a public cryptographic key with the
identity of the certificate holder. It includes a distinguished name, identification and signature
of the certificate authority (CA, the issuer and guarantor of the certificate), and the period
for which the certificate is valid, possibly with other, additional information.

The three types of certificates of interest here should not be confused.

• CA - The Certificate Authority identifies the authority, or organization, that issues a
certificate.

• Server - Identifies a particular end-service. Its value as an guarantee of identity is
founded in the authority of the organization that issues the certificate. It is the certificate
specified to the server at startup.

• Client - Identifies a particular client to a server via SSL (client authentication). Typically,
the identity of the client is assumed to be the same as the identity of a human being.
Again, its value as an guarantee of identity is founded in the authority of the organization
that issues the certificate.

The various OpenSSL tools are available for management of all of these certificate types in
each of the three SSL environments.

• The HP SSL1 for OpenVMS product provides the ‘‘SSL Certificate Tool’’ procedure can be
used to perform most required certificate management tasks from a menu-driven interface
(HP SSL1 V1.0-2C example).

4–20 Transport Layer Security

$ @SSL1$COM:SSL1$CERT_TOOL.COM

SSL Certificate Tool

Main Menu

1. View a Certificate
2. View a Certificate Signing Request
3. Create a Certificate Signing Request
4. Create a Self-Signed Certificate
5. Create a CA (Certification Authority) Certificate
6. Sign a Certificate Signing Request
7. Revoke a Certificate
8. Create a Certificate Revocation List
9. Hash Certificates
10. Hash Certificate Revocations
11. Exit

Enter Option:

• The standard OpenSSL toolkit provides a number of command-line tools for creation and
management of X.509 certificates.

• Or if you prefer something a little less arcane than the (ever so useful) command-line

not really an endorsement but

XCA is a GUI application intended for creating and managing X.509 certificates,
certificate requests, RSA, DSA and EC private keys, Smartcards and CRLs. It uses
the OpenSSL library for the cryptographic operations. The application is available
for Linux, macOS and Windows, as well as source code. https://hohnstaedt.de/xca
https://sourceforge.net/projects/xca/

4.6.1 Server Certificate

The server uses a certificate to establish its identity during the initial phase of the SSL
protocol exchange. Each server should have a unique certificate. An example certificate is
provided with the WASD OpenSSL package. If this is not available (for instance when using
the HP SSL1 for OpenVMS product) then the server will fallback to an internal, default
certificate that allows SSL functionality even when no external certification is available. If
a ‘‘live’’ SSL site is required a unique certificate issued by a third-party Certificate Authority
is desirable.

Let’s Encrypt
Self-signing certificates as described below has a number of shortcomings for general
web server certification. Fortunately Let’s Encrypt makes it possible automatically
to obtain and maintain a browser-trusted certificate, simply, and at no cost. This is
accomplished by running a certificate management agent on the web server. The
WASD Certificate Management Environment (wCME) may be used to perform this
function on VMS.

See wCME on the WASD download page at https://wasd.vsm.com.au/wasd/

Transport Layer Security 4–21

A less satisfactory alternative to obtaining one of these certificates is provided by the WASD
support DCL procedures, which are quick hacks to ease the production of certificates on an
ad hoc basis. In all cases it is preferable to directly use the utilities provided with OpenSSL,
but the documentation tends to be rather sparse.

The first requirement may be a tailored ‘‘Certificate Authority’’ certificate. As the Certificate
Authority is non-authoritative (not trying to be too oxymoronic, i.e. not a well-known CA)
these certificates have little value except to allow SSL transactions to be established with
trusting clients. More commonly ‘‘Server Certificates’’ for specific host names are required.

Loading Authority Certificates

CA certificates can be loaded into browsers to allow sites using that CA to be accessed by that
browser without further dialog. Browsers commonly invoke a server certificate load dialog
when encountering a site using a valid but unknown server certificate.

A manual load is accomplished by requesting the certificate in a format appropriate to the
particular browser. This triggers a browser dialog with the user to confirm or refuse the
loading of that certificate into the browser Certificate Authority database.

To facilitate loading CA certificates into a browser ensure the following entries are contained
in the HTTP$CONFIG configuration file:

[AddIcon]
/httpd/-/binary.gif [BIN] application/x-x509-ca-cert

[AddType]
.CRT application/x-x509-ca-cert - DER certifcate (MSIE)
.PEM application/x-x509-ca-cert - Privacy Enhanced Mail certificate

Then just provide a link to the required certificate file(s), and click.

Changing Server Certificates

If a site’s server (or CA certificate) is changed and the server restarted any executing browsers
will probably complain (Netscape Navigator reports an I/O error). In this case open the
browser’s certificate database and delete any relevant, permanently stored certificate entry,
then close and restart the browser. The next access should initiate the server certificate
dialog, or the CA certificate may be explicitly reloaded.

4.6.2 Certificate Signing Request

Recognised Certificate Authorities (CAs) such as Thawte and VeriSign publish lists of
requirements for obtaining a server certificate. These often include such documents required
to prove organisational name and the right to use the domain name being requested. Check
the particular vendor for the exact requirements.

In addition, a document containing the site’s private key is required. This is known as the
Certificate Signing Request (CSR) and must be generated digitally at the originating site.

Using the HP SSL1 for OpenVMS product ‘‘SSL Certificate Tool’’ described in Section 4.6
a CSR can easily be generated using its menu-driven interface. The alternative is using a
command-line interface tool.

4–22 Transport Layer Security

The following instructions provide the basics for generating a CSR at the command-line in the
WASD and generally the any OpenSSL environment (including the HP SSL1 for OpenVMS
product).

1. Change to a secure directory. The following is a suggestion.

$ SET DEFAULT WASD_ROOT:[LOCAL]

2. Assign a foreign verb for the OPENSSL application. The location may vary a little
depending on which OpenSSL package you have installed. See <REFERENCE>(hd_
openssl.exe).

3. Specify a source of lots of ‘‘random’’ data (can be any big file for the purposes of this
exercise).

$ RANDFILE = "WASD_EXE:HTTPD_SSL.EXE"

4. Find the template configuration file. You will need to specify this location in a step
described below. Should be something like the following.

WASD_ROOT:[SRC.OPENSSL-version.WASD]TEMPLATE.CNF

5. Generate your private key (RANDFILE data is used by this). The output from this looks
something like what’s shown. Notice the pass phrase prompts. This is your private
key, don’t forget it!

$ OPENSSL GENRSA -DES3 -OUT SERVER.KEY 1024

Generating RSA private key, 1024 bit long modulus
.....++++++
......++++++
e is 65537 (0x10001)
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

6. Generate the Certificate Signing Request using syntax similar to the following (this is
where you are required to specify the location of the configuration template). Note that
there are quite a few fields - GET THEM RIGHT! They need to be unique and local
- they’re your distinguishing name (DN). ‘‘Common Name’’ is the host you want the
certificate for. It can be a fully qualifier host name (e.g. ‘‘klaatu.local.net’’), or a local
wildcard (e.g. ‘‘*.local.net’’) for which you may pay more.

$ OPENSSL REQ -NEW -KEY SERVER.KEY -OUT SERVER.CSR -CONFIG -
WASD_ROOT:[SRC.OPENSSL-0_9_6B.WASD]TEMPLATE.CNF

Transport Layer Security 4–23

Using configuration from template.cnf
Enter PEM pass phrase:
You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU]:AU
State or Province Name (full name) [Some-State]:South Australia
Locality Name (eg, city) []:Adelaide
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Example
Organizational Unit Name (eg, section) []:WASD
Common Name (eg, YOUR name) []:klaatu.local.net
Email Address []:Mark.Daniel@wasd.vsm.com.au
Please enter the following ’extra’ attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

7. That’s it! You should have two files in your default directory.

SERVER.CSR;1 2 14-MAR-2002 04:38:26.15
SERVER.KEY;1 2 14-MAR-2002 04:31:38.76

Keep the SERVER.KEY file secure. You’ll need it when you receive the certificate back
from the CA.

The SERVER.CSR is what you send to the CA (usually by mail or Web form). It looks
something like the following

$ TYPE SERVER.CSR
-----BEGIN CERTIFICATE REQUEST-----
MIIBPTCB6AIBADCBhDELMAkGA1UEBhMCWkExFTATBgNVBAgTDFdlc3Rlcm4gQ2Fw
ZTESMBAGA1UEBxMJQ2FwZSBUb3duMRQwEgYDVQQKEwtPcHBvcnR1bml0aTEYMBYG
A1UECxMPT25saW5lIFNlcnZpY2VzMRowGAYDVQQDExF3d3cuZm9yd2FyZC5jby56
YTBaMA0GCSqGSIb3DQEBAQUAA0kAMEYCQQDT5oxxeBWu5WLHD/G4BJ+PobiC9d7S
6pDvAjuyC+dPAnL0d91tXdm2j190D1kgDoSp5ZyGSgwJh2V7diuuPlHDAgEDoAAw
DQYJKoZIhvcNAQEEBQADQQBf8ZHIu4H8ik2vZQngXh8v+iGnAXD1AvUjuDPCWzFu
pReiq7UR8Z0wiJBeaqiuvTDnTFMz6oCq6htdH7/tvKhh
-----END CERTIFICATE REQUEST-----

You can see the details of this file using

$ OPENSSL RSA -NOOUT -TEXT -IN SERVER.CSR

After Receiving The Certificate

Once the signed certificate has been issued by the Certificate Authority it can be placed di-
rectly into the server configuration directory, usually WASD_ROOT:[LOCAL], and configured
for use from there. Using the certificate direct from the CA requires that the private key pass-
word be given to the server each time (Section 4.5.9). It is possible to embed the password
into the certificate key so that this is not required.

4–24 Transport Layer Security

Remember to keep original files secure, only work on copies!

1. Assign a foreign verb for the OPENSSL application. The location may vary a little
depending on which OpenSSL package you have installed.

$ OPENSSL == "$WASD_ROOT:[SRC.OPENSSL-version.AXP.EXE.APPS]OPENSSL.EXE"

When using the HP SSL1 for OpenVMS product or other OpenSSL toolkit the verb may
already be available.

$ SHOW SYMBOL OPENSSL
OPENSSL == "$ SSL1$EXE:OPENSSL"

2. Go to wherever you want to do the work.

$ SET DEFAULT WASD_ROOT:[LOCAL]

3. You may require these additional steps (based on user experience):

• VeriSign sent certificate with headers like this:

-----BEGIN PKCS #7 SIGNED DATA-----
-----END PKCS #7 SIGNED DATA-----

Using an editor, ensure the header/trailer looks this:

-----BEGIN PKCS7-----
-----END PKCS7-----

• Then into the required intermediate format:

$ OPENSSL pkcs7 -print_certs -in SERVER.CERT -outform DER -out CERTIFICATE.PEM

• A readable version of the new file can be viewed using:

$ OPENSSL x509 -noout -text -in CERTIFICATE.PEM

4. Using the original key file embed your password into a copy. When prompted "Enter PEM
pass phrase:" enter the password.

$ OPENSSL rsa -in SERVER.KEY -out WORK.PEM

5. Append this password-embedded key file to your certificate file.

$ COPY CERTIFICATE.PEM,WORK.PEM CERTIFICATE.PEM;0

6. Delete the temporary file.

$ DELETE WORK.PEM;*

4.7 SSL CGI Variables
CGI variables specific to SSL transactions optionally may be enabled using WASD_CONFIG_
MAP mapping rules. (See ‘‘WASD Web Services - Install and Config’’ document, ‘‘Request
Processing Configuration’’ section.) The may be done on a specific per-path or general CGI
basis. Two variations are available, one reflecting Purveyor Secure Web Server style variables,
the other the Apache mod_ssl style. In the following examples, due to length of particular
items, some in this example are displayed wrapped. Also, where some ASN.1 records are
duplicated (as in SSL_CLIENT_S_DN), some variables will contain newline characters (0x10)

Transport Layer Security 4–25

between those elements (e.g. SSL_CLIENT_S_DN_OU). The line breaks in the examples do
not necesarily reflect those characters.

set /path/* SSLCGI=apache_mod_ssl

WWW_SSL_CIPHER == "AES128-SHA"
WWW_SSL_CIPHER_ALGKEYSIZE == "128"
WWW_SSL_CIPHER_USEKEYSIZE == "128"
WWW_SSL_PROTOCOL == "TLSv1.2"
WWW_SSL_SERVER_A_KEY == "rsaEncryption"
WWW_SSL_SERVER_A_SIG == "sha1WithRSAEncryption"
WWW_SSL_SERVER_I_DN == "/C=AU/ST=SA/L=Adelaide/O=WASD CA Cert
/OU=OpenSSL 1.0.1j Testing Only/CN=WASD VMS Web Services
/Email=Mark.Daniel@wasd.vsm.com.au"
WWW_SSL_SERVER_I_DN_C == "AU"
WWW_SSL_SERVER_I_DN_CN == "WASD VMS Web Services"
WWW_SSL_SERVER_I_DN_EMAIL == "Mark.Daniel@wasd.vsm.com.au"
WWW_SSL_SERVER_I_DN_L == "Adelaide"
WWW_SSL_SERVER_I_DN_O == "WASD CA Cert"
WWW_SSL_SERVER_I_DN_OU == "OpenSSL 1.0.1j Testing Only"
WWW_SSL_SERVER_I_DN_ST == "SA"
WWW_SSL_SERVER_M_SERIAL == "01"
WWW_SSL_SERVER_M_VERSION == "3"
WWW_SSL_SERVER_S_DN == "/C=AU/ST=SA/L=Adelaide/O=WASD Server Cert
/OU=OpenSSL 1.0.1j Testing Only/CN=WASD VMS Web Services
/Email=Mark.Daniel@wasd.vsm.com.au"
WWW_SSL_SERVER_S_DN_C == "AU"
WWW_SSL_SERVER_S_DN_CN == "WASD VMS Web Services"
WWW_SSL_SERVER_S_DN_EMAIL == "Mark.Daniel@wasd.vsm.com.au"
WWW_SSL_SERVER_S_DN_L == "Adelaide"
WWW_SSL_SERVER_S_DN_O == "WASD Server Cert"
WWW_SSL_SERVER_S_DN_OU == "OpenSSL 1.0.1j Testing Only"
WWW_SSL_SERVER_S_DN_ST == "SA"
WWW_SSL_SERVER_V_END == "Nov 16 13:02:05 2024 GMT"
WWW_SSL_SERVER_V_START == "Nov 19 13:02:05 2014 GMT"
WWW_SSL_SESSION_ID == "b72812e716f1f20c983935db08ad8ede3af786ffd505b4a2d707eddf8d07dcd9"
WWW_SSL_VERSION_INTERFACE == "HTTPd-WASD/10.4.0 OpenVMS/AXP SSL"
WWW_SSL_VERSION_LIBRARY == "OpenSSL 1.0.1j 15 Oct 2014"

The Apache mod_ssl client certificate details described in Section 4.5.18 above are not shown
in the above example but would be included if the request was X.509 authenticated.

X509 certificate extensions are in general visible from WATCH and accessible via CGI
variables when enabled using SET SSLCGI=apache_mod_ssl_extens and SSLCGI=apache_

mod_ssl_client path mappings.

set /path/* SSLCGI=purveyor

4–26 Transport Layer Security

WWW_SECURITY_STATUS == "SSL"
WWW_SSL_CIPHER == "AES128-SHA"
WWW_SSL_CIPHER_KEYSIZE == "128"
WWW_SSL_CLIENT_AUTHENTICATED == "TRUE"
WWW_SSL_CLIENT_CA == "/O=VeriSign, Inc./OU=VeriSign Trust Network
/OU=www.verisign.com/repository/RPA Incorp. By Ref.,LIAB.LTD(c)98
/CN=VeriSign Class 1 CA Individual Subscriber-Persona Not Validated"
WWW_SSL_CLIENT_DN == "/O=VeriSign, Inc./OU=VeriSign Trust Network
/OU=www.verisign.com/repository/RPA Incorp. by Ref.,LIAB.LTD(c)98
/OU=Persona Not Validated/OU=Digital ID Class 1 - Netscape
/CN=Mark Daniel/Email=mark.daniel@wasd.vsm.com.au"
WWW_SSL_SERVER_CA == "/C=AU/ST=SA/L=Adelaide/O=WASD CA Cert
/OU=OpenSSL 1.0.1j Testing Only/CN=WASD VMS Web Services
/Email=Mark.Daniel@wasd.vsm.com.au"
WWW_SSL_SERVER_DN == "/C=AU/ST=SA/L=Adelaide/O=WASD Server Cert
/OU=OpenSSL 1.0.1j Testing Only/CN=WASD VMS Web Services
/Email=Mark.Daniel@wasd.vsm.com.au"
WWW_SSL_VERSION == "TLSv1.2"

Note that this example also shows SSL_CLIENT_ . . . variables. These will only be present
if the request is X.509 certificate authenticated.

4.8 SSL Service Evaluation
This section is just the barest introduction to a significant topic.

Qualys SSL Lab

‘‘How well do you know SSL? If you want to learn more about the technology that protects
the Internet, you’ve come to the right place.’’

https://www.ssllabs.com/

Not necessarily an endorsement by WASD but a useful resource in itself.

Provides a free and unencumbered, comprehensive SSL Server test service

https://www.ssllabs.com/ssltest/

reporting on certificate status, protocol version, cipher suites, handshakes with various
simulated clients, and protocol details including known vulnerabilities. It also summarises
the report with a colour-coded rating.

At Home

So to speak.

The OPENSSL command-line application (<REFERENCE>(hd_openssl.exe)) provides a con-
figurable client for checking and testing various aspects of server configuration and behaviour.
The basic operation represented by the command-line

$ openssl s_client -host <host name or address> -port 443

provides a comprehensive report including certificates and certificate chain, the protocol
version and cipher negotiated, along with more esoteric elements of TLS/SSL. Some data
have been 8< snipped 8< for brevity in the following example.

Transport Layer Security 4–27

$ openssl s_client -host klaatu.private -port 443
WARNING: can’t open config file: SSLROOT:[000000]openssl.cnf
CONNECTED(00000003)
depth=0 C = AU, ST = SA, L = Adelaide, O = WASD Server Cert, OU 8< snip 8<
verify error:num=20:unable to get local issuer certificate
verify return:1
depth=0 C = AU, ST = SA, L = Adelaide, O = WASD Server Cert, OU 8< snip 8<
verify error:num=27:certificate not trusted
verify return:1
depth=0 C = AU, ST = SA, L = Adelaide, O = WASD Server Cert, OU 8< snip 8<
verify error:num=21:unable to verify the first certificate
verify return:1

Certificate chain
0 s:/C=AU/ST=SA/L=Adelaide/O=WASD Server Cert/OU=OpenSSL 1.0.1 8< snip 8<
i:/C=AU/ST=SA/L=Adelaide/O=WASD CA Cert/OU=OpenSSL 1.0.1j Te 8< snip 8<

Server certificate
-----BEGIN CERTIFICATE-----
MIIFsjCCBJqgAwIBAgIBBDANBgkqhkiG9w0BAQQFADCBtjELMAkGA1UEBhMCQVUx
8< snip 8<
pErvrfr69iDbJbhO+mRmIkZIXHc5CFV/M1zzLD5240ixxu/d6nAUBhGba0W4Kste
x1SgLJ0BqFTjegxuHRXkK5lOlY11Hw==
-----END CERTIFICATE-----
subject=/C=AU/ST=SA/L=Adelaide/O=WASD Server Cert/OU=OpenSSL 1. 8< snip 8<
issuer=/C=AU/ST=SA/L=Adelaide/O=WASD CA Cert/OU=OpenSSL 1.0.1j 8< snip 8<

No client certificate CA names sent

SSL handshake has read 1791 bytes and written 625 bytes

New, TLSv1/SSLv3, Cipher is AES256-GCM-SHA384
Server public key is 2048 bit
Secure Renegotiation IS supported
Compression: NONE
Expansion: NONE
SSL-Session:

Protocol : TLSv1.2
Cipher : AES256-GCM-SHA384
Session-ID: 61FEC1629DA3E675AA124223CDB9CB5AB7701D872E85E15 8< snip 8<
Session-ID-ctx:
Master-Key: F4260DFE9A7370B3EA85D22D89DB8A7925C655159C3C509 8< snip 8<
Key-Arg : None
PSK identity: None
PSK identity hint: None
SRP username: None
TLS session ticket lifetime hint: 300 (seconds)
TLS session ticket:
0000 - 63 d6 2a 84 19 fe f6 9a-13 60 e1 8a 65 dd f9 fc c.*......‘..e...

8< snip 8<
00a0 - 9a 2d 29 9b 8e aa ab 69-11 0d 45 ed 63 48 f5 4f .-)....i..E.cH.O

Start Time: 1415828121
Timeout : 300 (sec)
Verify return code: 21 (unable to verify the first certificate)

8< snip 8<

4–28 Transport Layer Security

A ‘‘bad select 38’’ is a VMS (C-RTL) limitation of earlier versions of OpenSSL and is not
present in later versions or on other platforms, and the default use of -s_client will prompt
for an HTTP request line, send that to the server, and report the response.

Checking whether a specific protocol version is enabled on a site:

$ openssl s_client -ssl2 -host <host name or address> -port 443
$ openssl s_client -ssl3 -host <host name or address> -port 443
$ openssl s_client -tls1 -host <host name or address> -port 443
$ openssl s_client -tls1_1 -host <host name or address> -port 443
$ openssl s_client -tls1_2 -host <host name or address> -port 443
$ openssl s_client -tls1_3 -host <host name or address> -port 443

The following example shows a server test where the protocol version is NOT supported.

$ openssl s_client -ssl3 -host klaatu.private -port 443
8< snip 8<
SSL handshake has read 7 bytes and written 0 bytes

New, (NONE), Cipher is (NONE)
Secure Renegotiation IS NOT supported
Compression: NONE
Expansion: NONE
SSL-Session:

Protocol : SSLv3
Cipher : 0000

8< snip 8<

TLS Version 1.3

Server TLSv1.3 response may be checked using an OPENSSL.EXE v1.1.1 or later.

$ OPENSSL version
OpenSSL 1.1.1 11 Sep 2018
$ OPENSSL s_client --host wasd.xxxxxxxxxx.xxx --port 443
CONNECTED(00000003)

depth=1 C = US, O = Let’s Encrypt, CN = Let’s Encrypt Authority X3
verify error:num=20:unable to get local issuer certificate

Certificate chain
0 s:CN = wasd.xxxxxxxxx.xxx
i:C = US, O = Let’s Encrypt, CN = Let’s Encrypt Authority X3

1 s:C = US, O = Let’s Encrypt, CN = Let’s Encrypt Authority X3
i:O = Digital Signature Trust Co., CN = DST Root CA X3

Server certificate
-----BEGIN CERTIFICATE-----
MIIHJDCCBgygAwIBAgISA8gmjxQDyTgXeAfy7ehpvXeBMA0GCSqGSIb3DQEBCwUA
8< snip 8<
rL2n3YpsP2xuCwV6ZT+etAl1IrtmXuC9tnG2QRVtVJn7wyUacUTz3XuKagS9w6Bo
be0oPuGGnT0=
-----END CERTIFICATE-----
subject=CN = wasd.xxxxxxxxx.xxx

issuer=C = US, O = Let’s Encrypt, CN = Let’s Encrypt Authority X3

Transport Layer Security 4–29

No client certificate CA names sent
Peer signing digest: SHA256
Peer signature type: RSA-PSS
Server Temp Key: X25519, 253 bits

SSL handshake has read 3827 bytes and written 393 bytes
Verification error: unable to get local issuer certificate

New, TLSv1.3, Cipher is TLS_AES_256_GCM_SHA384
Server public key is 4096 bit
Secure Renegotiation IS NOT supported
Compression: NONE
Expansion: NONE
No ALPN negotiated
Early data was not sent
Verify return code: 20 (unable to get local issuer certificate)

Post-Handshake New Session Ticket arrived:
SSL-Session:

Protocol : TLSv1.3
Cipher : TLS_AES_256_GCM_SHA384
Session-ID: 0074FBDFD12EF693B0419611204FF9EC6BFA3C006A2A7D312A9435CF7D79FE3A
Session-ID-ctx:
Resumption PSK: 3176C237B08F4E83B7AC32CBC79C8B79CC8FBA20837419682C4A97998898ECDE13F5254E0820C977AEC0B63C9B4B21C8
PSK identity: None
PSK identity hint: None
SRP username: None
TLS session ticket lifetime hint: 5400 (seconds)
TLS session ticket:
0000 - a7 99 08 ba aa 75 1d 53-68 c4 66 fb 5e 43 5e b2u.Sh.f.^C^.

8< snip 8<
00d0 - 5d a5 3c 10 5e 4c 41 4b-bb 15 c9 5c 08 fe e1 1f].<.^LAK...\....

Start Time: 1537620807
Timeout : 7200 (sec)
Verify return code: 20 (unable to get local issuer certificate)
Extended master secret: no
Max Early Data: 0

read R BLOCK

Post-Handshake New Session Ticket arrived:
SSL-Session:

Protocol : TLSv1.3
Cipher : TLS_AES_256_GCM_SHA384
Session-ID: 8DB922A11FD02889CED45C4D125C5A55B5F76B42B49826EF39CA265988FA4FA9
Session-ID-ctx:
Resumption PSK: 60F73CE06DDDA5737B607A20DF7E13D85CBFFD695DB98B53B9AF09A0DABE6B34A0F50F86E2578845F1E0EA799B014B42
PSK identity: None
PSK identity hint: None
SRP username: None
TLS session ticket lifetime hint: 5400 (seconds)
TLS session ticket:
0000 - a7 99 08 ba aa 75 1d 53-68 c4 66 fb 5e 43 5e b2u.Sh.f.^C^.

8< snip 8<
00d0 - 92 32 8d 2c 9c 22 54 b1-6e 24 9a c3 de 1a de a2 .2.,."T.n$......

4–30 Transport Layer Security

Start Time: 1537620807
Timeout : 7200 (sec)
Verify return code: 20 (unable to get local issuer certificate)
Extended master secret: no
Max Early Data: 0

read R BLOCK
read:errno=0

4.9 SSL References
The following provide a starting-point for investigating SSL and OpenSSL further (verified
available at time of publication).

• http://www.openssl.org/
OpenSSL Project. This site is the prime source for the full toolkit, documentation, related
links, news and support via mailing lists, etc.
http://wiki.openssl.org/
OpenSSL Wiki

• https://h41379.www4.hpe.com/openvms/products/ssl/ssl.html
http://hInformation regarding HP SSL1 (Secure Sockets Layer) for OpenVMS
Perhaps from the OpenVMS (top-level) documentation URL: https://www.hpe.com/us/en/servers/openvms/documents.h

• https://www.oreilly.com/library/view/high-performance-browser/9781449344757/ch04.html
Ilya Grigorik’s - Transport Layer Security (TLS)
From the excellent https://www.oreilly.com/library/view/high-performance-browser/9781449344757/

• http://en.wikipedia.org/wiki/Transport_Layer_Security
Wikipedia - Transport Layer Security (SSL)

• https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
OWASP Transport Layer Protection Cheat Sheet

• http://en.wikipedia.org/wiki/OpenSSL
Wikipedia - OpenSSL

• http://en.wikipedia.org/wiki/Public_key_infrastructure
Wikipedia - Public-Key Infrastructure

• https://www.ssllabs.com/
Qualys SSL Labs
https://www.ssllabs.com/ssltest/
SSL Server Test

• https://www.feistyduck.com/books/openssl-cookbook/
OpenSSL Cookbook by Ivan Ristic (of Qualys Labs)
As promoted by OpenSSL.org

• https://www.openssl.org/docs/manmaster/man1/openssl.html
https://wiki.openssl.org/index.php/Command_Line_Utilities
OPENSSL.EXE application

Transport Layer Security 4–31

• http://hohnstaedt.de/xca
https://sourceforge.net/projects/xca/
XCA is a GUI application intended for creating and managing X.509 certificates, certificate
requests, RSA, DSA and EC private keys, Smartcards and CRLs.

4–32 Transport Layer Security

Chapter 5

HTTP/2

HTTP/2 is the most recent standard (RFC 7540, 2015) for implementing how HTTP is
represented by, and transported between, client and server. It is not a ground-up rewrite of
the established standard, HTTP/1.1 (RFC 2616, 1999). Those elements and semantics remain
substantially the same. Instead HTTP/2 modifies how the data is encapsulated (framed) and
transferred between agents, abstracting the complexity of this within the new protocol layer,
leaving the application level largely insulated from change. As a result all existing HTTP/1.1
web-based environments should be able to continue without modification.

The focus of the protocol is on performance, in particular end-user perceived page rendering
and web application responsiveness. With the original web use case being a relatively simple,
single resource request-response, and early markup involving text with a few illustrative
images, the single network connection, back-to-back request-response paradigm was simple
to implement and worked well enough. In short time this moved to multiple network
connections, each loading elements in parallel as the complexity and density of the individual
elements on the pages increased, and to the introduction of HTTP/1.1 pipelining (back-to-
back requests over a single connection) in an attempt to avoid request-response-request
latency. Modern web documents and applications tend to have dozens of fine-grained elements
that dynamically load resources based on the content of the page and/or user interaction.
The single, then multiple network connections, each with its round-trip TCP connection
establishment overhead and request-response blocking of resources, did not scale effectively.
HTTP/2 replaces it with a single TCP connection on which multiple resources concurrently
can be requested, pushed, and transferred. A more rigorous and effective implementation of
the pipeline concept.

While multiplexing communication over a single network connection is a core performance
technology there are other contributing elements. The framing layer uses binary tokens and
parameters. The plain-text request and response headers of HTTP/1.n are replaced with
tokenised, encoded and dynamically cached equivalents, commonly providing compression
in excess of eighty percent. The relationship and priority of resources can be established
allowing inferior resources to be delivered after or dependent on superior ones. The HTTP/2
server can send multiple responses to a single request. Known as server push it can be used
to pre-load the browser (cache) with resources it has not encountered yet.

HTTP/2 5–1

HTTP/2 has the potential to place additional load on the client and server in comparison to
HTTP/1.n. One particular consideration for WASD sites is the stream concurrency setting of
the HTTP/2 connection. The server specifies to the client the maximum number of concurent
request-response (and server push) streams it will accept. RFC 7540 contains, ‘‘This limit
is directional: it applies to the number of streams that the sender permits the receiver
to create. Initially, there is no limit to this value. It is recommended that this value be
no smaller than 100, so as to not unnecessarily limit parallelism.’’ This translates to a
hypothetical ten browsers connected to the site each with up to one hundred concurrent
streams, or potentially one thousand active requests! Time to check those server configuration
and SYSGEN parameters . . .

Note that HTTP/1.1 has recently been revisited with RFC 7230 family of specifications (2014)
providing some clarifications and refinements on the original.

5.1 WASD HTTP/2
WASD HTTP/2 implements all of the essential requirements of RFC 7540 (naturally enough).
This includes the framing protocol, datagram (message) and stream management, header
compression (RFC 7541), connection settings and flow control, along with HTTP/2 connection
establishment and termination (TLS ALPN and HTTP upgrade). It does not ((perhaps)
currently) provide server-push or stream prioritisation and dependency.

Prior to the introduction of HTTP/2, WASD’s fundamental abstraction was the request, with
each request interfacing directly with the network stack. With an HTTP/2 protocol connection
somewhat supplanting the role of a Transmission Control Protocol (TCP) connection in
HTTP/1.n, a new level of communication abstraction was required between the request
processing and the network processing. It should be noted that HTTP/2 itself is transported
on TCP.

Another new layer of abstraction required interfacing each protocol’s request/response header
formats with the underlying server processing (avoiding excessive duplication of code).
HTTP/1.n has a plain-text, carriage-control separated format, while HTTP/2 has a binary,
compressed, lookup-table oriented format (RFC 7541). The layer was implemented using a
key-value dictionary.

The accomodations for handling both HTTP/2 and HTTP/1.1, along with related and ancilliary
design and code changes, have not measurably impacted overall WASD performance, although
as noted below there is a server process CPU impost associated with HTTP/2.

HTTP/2 and WATCH

WATCH reports have the network item: [x]HTTP/2. This provides a detailed overview of
the underlying framing and connection management exchanges between client and server.
WATCH reports are available to HTTP/2 connected clients with one consideration. Due to
multiplexed requests over the single network connection, WATCHing the [x]HTTP/2 item of
another request in the same browser (using the same HTTP/2 connection - and there can be
multiple from a single browser) is not possible (or at least more code than it’s worth). The
HTTP/2 activity of the WATCHing generates more report items which generate . . . a descent
into reporting oblivion.

5–2 HTTP/2

WASD detects when a request is initiated on the same HTTP/2 connection as an [x]HTTP/2
WATCHing client and if this sort of reporting cascade is possible (any networking group item)
advises

|Time_______|Module__|Line|Item|Category__|Event...|
|22:00:55.22 WATCH 1823 0004 CONNECT HTTP/2 with 192.168.1.2,62446 on https://klaatu.private,443
|22:00:55.22 WATCH 1454 0004 CONNECT HTTP/2 rabbit hole|

Such a request is not reported on further.

Workarounds?

• WATCH from an independent browser instance. Often requires a separate host or
different browser (e.g. Chrome and Firefox on the same host).

• Have an HTTP/1.1 (only) service on the same server and use WATCH from that.

5.2 HTTP/2 and Performance
With HTTP/2 not modifying the fundamentals of HTTP/1.1 semantics the commonly touted
payoff for all the additional complexity (in implementation) is performance. While this is often
stated in terms of page rendering speeds or web application responsiveness there is another
significant measure of performance - efficiency. HTTP/2 much more efficiently utilises each
network (TCP) connection, as well as reducing the (time and processing) overhead of setting-
up and tearing-down of each of these required for parallelism under HTTP/1.1.

Is it all worth it? As might be expected - that depends.

There are a number of sufficiently good analyses of both the factors that affect HTTP/2
performance and the actual performance relative to HTTP/1.1. See the references section
and search the Web. This section contains some observations made during WASD HTTP/2
development. All of these seem to correspond with others’ observations, as well as what might
reasonably be expected considering the strategies employed by the protocol.

• For simple request-response use cases (e.g. download a file) HTTP/2 makes no observable
performance difference.

• Where multiple resources need to be loaded by a page the measurable performance
improvement is proportional to the number of resources and the latency of the network.

• In a low-latency environment such as the average LAN (e.g. 5mS RTT) HTTP/2 makes
minimal difference irrespective of the number of resources loaded (until it reaches
rediculous quantities).

• In a high-latency environment such as a VPN spanning half the globe (e.g. 350mS RTT)
HTTP/2 makes an obvious and of course measurable improvement for anything other than
a trivial number of resources.

• On a CPU constrained system HTTP/1.n is significantly more responsive than HTTP/2.
This unsurprising considering the explicit multiplexing and header marshalling employed
by HTTP/2.

HTTP/2 5–3

• On the developer’s bench there is ~10% more CPU consumed for the same load profile**
via HTTP/2 compared to HTTP/1.1 for similar durations. This is (probably) due to header
compression and multiplexed stream processing. It is (probably) offset (to some degree) by
fewer resources consumed in the network stack managing the multiple TCP connections
of HTTP/1.1.

As also related in Chapter 11, using the same load profile as above** and using HTTP/1.1,
WASD v11.0 compared to v10.4 showed ~5% additional CPU and duration. This is
(probably) largely due to dictionary processing.

** 100 individual files, size 2kB to 250kB, 50 concurrent, ~30% CPU utilisation (~5%

USER mode, mostly INTERRUPT servicing), batched 10,000 at a time over a LAN.

• After some months accessing WASD HTTP/2 over various LANs and WANs the developer,
FWIW, can’t shake the perception that it seems generally more responsive.

YMMV!

Performance Assessment

The simplest tool for getting a feel for, and elementary measurement of HTTP/2 may be found
in the WASD_ROOT:[EXERCISE] directory. The document DOTTY.HTML and its companion
files provide a page that loads a selectable number of resources (images) in a consistent and
reproducible manner. This DOTTY.HTML can be accessed via unencrypted HTTP (http://),
encrypted HTTP (https://) and services configured to provide HTTP/2 or HTTP/1.1. Using
these combinations with the selectable volume of resources, elementary comparisons may be
made in target environments.

The Server Admin, HTTP Report (Chapter 9) contains comparative duration and bytes-per-
second minimum/maximum/average for total server HTTP/2 and HTTP/1.n requests. These
cannot simply be taken at face value without some consideration of the respective load profile
but under controlled conditions can provide useful metrics.

Other development and load/performance tools were employed from a Linux platform. For
someone educated in computing during the (19)70s, the availability of VM technology for such
purposes is just brilliant! ‘‘But you know, we were happy in those days, though we were poor.’’

Indispensible were:

https://nghttp2.org/documentation/nghttp.1.html
https://nghttp2.org/documentation/h2load.1.html

Many thanks to the developer(s) of this package.

5.3 HTTP/2 Configuration
While effectively transparent to the end-user, HTTP/2 has some aspects that need to be
carefully considered by the server administrator.

• The level of (request) concurrency suggested by RFC 7540 section 6.5.2 would likely re-
quire redimensioning a web server and possibly the supporting system. Environments
historically expecting per-client resource demand to be limited by the number of concur-
rent (HTTP/1.n) network connections an agent will deploy per origin server, often limited
to less than a dozen, might behave entirely differently when presented with many dozens,

5–4 HTTP/2

or potentially hundreds of requests. WASD’s default of 100 is the RFC recommendation
in part because browsers tend to open multiple connections to maintain the parallelism
sought, so a reduction in HTTP/2 stream concurrency often just increases HTTP/2 con-
nection concurrency.

• Secure HTTP requires a minimum of TLS 1.2 with SNI and ALPN (RFC 7540 section
9.2).

• The ciphers available for use with HTTP/2 secure HTTP are quite specific (at least
in what the RFC prohibits - RFC 7540 Appendix A). This and the overall encryption
requirements for HTTP/2 can cause issues with established (older) agents and with
mainstream browsers strictly enforcing the RFC definitions making support for combined
/2-/1.1 services sometimes problematic.

Use of elliptic curve ciphers (ECDHE), as an element of Perfect Forward Security (PFS),
is mandated for HTTP/2 (RFC 7540 section 9.2.2). The keys for the elliptic curve ciphers
are stored in PEM-encoded files located in WASD_ROOT:[LOCAL]. These can be copied
from the WASD OpenSSL package using

$ copy WASD_ROOT:[SRC.OPENSSL-n_n_n.WASD.CERT]DH_PARAM_*.PEM WASD_ROOT:[LOCAL]

or locally generated as described in Section 4.5.5.

This SSL configuration and minimum cipher list seems to work for all major browsers at
the time of writing:

WASD_CONFIG_GLOBAL
[SecureSocket] enabled
[SSLversion] TLSvall
[SSLoptions] +OP_CIPHER_SERVER_PREFERENCE
[SSLcipherList] EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH:-DSS:

YMMV!

• TLS renegotiation (e.g. for a client certificate) must not be performed on an HTTP/2
secure connection. This precludes having selected paths perform authorisation based on
X509 and means that the service itself must request a client certificate at connection
establishment (RFC 7540 section 9.2.1).

• While the protocol provides for HTTP/2 using non-TLS (non-SSL) connections the major
browsers (Chrome, Edge (MSIE), FireFox, Safari) only support it when using TLS. To
encourage naive users to a TLS service the following mapping rule approach may be used
to redirect non-TLS home page connections.

WASD_CONFIG_MAP
[[*:80]]
if (!ssl:) redirect / https:///

HTTP/2 5–5

5.3.1 Global Configuration

HTTP/2 and its features are globally enabled and configured using directives contained in the
WASD_CONFIG_GLOBAL configuration file.

HTTP/2 Global Configuration

Directive Description Default

[Http2Protocol] enabled or disabled on a whole-
of-server basis

disabled

[Http2FrameSizeMax] maximum frame size in octets
(bytes) the server is prepared to
receive

16384

[Http2HeaderListMax] maximum number of octets
(bytes) permitted in a received
header once uncompressed

65535

[Http2HeaderTableMax] maximum number of bytes
permitted in the server-end
header cache

4096

[Http2PingSeconds] number of seconds between
connection RTT pings

300

[Http2StreamsMax] maximum number of concurrent
streams (requests) the server
permits on the connection

32

[Http2InitWindowSize] initial window size (number of
octets in transit) for flow-control
purposes

6291456

These largely reflect settings and defaults from RFC 7540 6.5.1

• The minimum frame size is defined by the RFC at 16384.

• WASD automatically pings a connection every configured seconds. The latest value is
available as real-number milliseconds in dictionary entry ‘‘http2_ping’’ and CGI variable
HTTP2_PING.

5.3.2 Service Configuration

Using the WASD_CONFIG_SERVICE directive [ServiceHttp2Protocol] HTTP/2 may be dis-
abled on a per-service basis. The default is enabled if HTTP/2 is enabled globally.

5–6 HTTP/2

5.3.3 Mapping Set Rules

WASD request processing rules may be used on a per-path basis to modify (some) global
configuration settings and provide other WevDAV configuation. See ‘‘WASD Web Services -
Install and Config’’ .

HTTP/2 Set Rules

Rule Description

HTTP2=PROTOCOL=1.1 send a ‘‘HTTP_1_1_REQUIRED’’ error causing the client
to use HTTP/1.1 (RFC 7540 section 7)

HTTP2=SEND=GOAWAY send a ‘‘GOAWAY’’ frame to the client resulting in it
dropping the HTTP/2 connection

HTTP2=SEND=PING send a ‘‘PING’’ frame to the client calculating the Round
Trip Time (RTT) of the connection

HTTP2=SEND=RESET send a ‘‘RST_STREAM’’ frame to the client causing it to
drop the HTTP/2 stream (request in progress)

HTTP2=STREAMS=MAX=integer set the maximum concurrent streams on a per-path basis

HTTP2=WRITE=low | normal | high When request data is written it is queued at the specified
priority, where high priority are written before normal
(default) and low priority, and normal priority before low.
This is only for associated stream (request) and is not a
connection or whole-of-server prioritisation.

Use path SETings to prioritise some resources (e.g. CSS and JavaScript) over others (e.g.
images) and potentially improve page rendering speed. Where multiple concurrent requests
are being serviced on the one HTTP/2 connection this will deliver the higher priority content
before others.

WASD_CONFIG_MAP
SET **.css http2=write=high
SET **.js http2=write=high

5.4 HTTP/2 Detection
A request using HTTP/2 may be detected during processing with the http2: conditional.

if (http2:)
do this

endif

See ‘‘WASD Web Services - Install and Config’’ .

A script may detect HTTP/2 using the REQUEST_PROTOCOL CGI variable with the value
‘‘HTTP/2’’. Other protocol versions are similarly represented.

HTTP/2 5–7

A Server-Side Includes (SSI) document can use variations on the following construct (and
similar to the script suggestion immediately above) to detect and process the request protocol.

<!--#if var={request_protocol} eqs="HTTP/2" -->
HTTP/2
<!--#else-->
HTTP/1.n
<!--#endif-->

This is demonstrated in the example SSI document: WASD_ROOT:[EXERCISE]SHTML.SHTML

At the time of writing there is no browser-supported mechanism for a dynamic document (i.e.
JavaScript) determining the underlying HTTP protocol used to access a resource. To access
this information the server must be used. The suggested method, and the one employed by
the DOTTY.HTML tool described above, is to provide one JavaScript source for HTTP/2 and
another for everything else.

The document would contain

<script type="text/javascript" src="/example-path/http.js"></script>

and the server configuration

WASD_CONFIG_MAP
if (http2:)

map /example-path/http.js /example-path/http2.js
else

map /example-path/http.js /example-path/http1.js
endif

where each contains a minimum variable setting or similar flag detectable by the document.

5.5 HTTP/2 References
The following provide a starting-point for investigating HTTP/2 (verified available at time of
publication).

• https://http2.github.io/
Home page for HTTP/2 maintained by the IETF HTTP Working Group.

• https://en.wikipedia.org/wiki/HTTP/2

• https://httpwg.github.io/specs/rfc7540.html
https://tools.ietf.org/html/rfc7540
HTTP/2 specification

• https://httpwg.github.io/specs/rfc7541.html
https://tools.ietf.org/html/rfc7541
HPACK (header compression) specification

• https://httpwg.github.io/specs/rfc7230.html
https://tools.ietf.org/html/rfc7230
Most recent HTTP/1.1 specifications (30, 31, 32, 33, 34 and 35)

• http://http2-explained.haxx.se/
Useful overview of HTTP/2 by the developer of cURL.

5–8 HTTP/2

• https://hpbn.co/http2/
Another useful and more detailed overview of the protocol.

From the excellent https://hpbn.co/

• http://undertow.io/blog/2015/04/27/An-in-depth-overview-of-HTTP2.html
A concise and useful summary.

• https://blog.cloudflare.com/tools-for-debugging-testing-and-using-http-2/
Not much here for VMS but a useful survey nonetheless.

HTTP/2 5–9

Chapter 6

WebDAV

Web-based Distributed Authoring and (not) Versioning for the WASD package.

Effective WASD WebDAV file-space (without significant naming constraints) relies on being
hosted on ODS-5 volumes. Behaviour hosting file-space on ODS-2 volumes is untested (though
possible provided file naming is constrained to ODS-2 conventions).

WASD WebDAV methods and request headers, etc., are also propagated to the scripting
environment and so functionality may be implemented using CGI, CGIplus or RTE based
applications.

WASD proxy-serving supports WebDAV methods, header fields, etc.

Generally WebDAV clients are applications other than browsers and so response bodies with
human-readable error explanations are unnecessary and consume bandwidth to no good
purpose, and so not provided.

File-systems are notoriously latent components relative to the rest of the system (more so
with VMS). Any operation to collections (directories) are not going to be atomic and for large
collections requiring many sub-operations the potential for the process to be interrupted or
otherwise disturbed are enormous. File-systems are not databases amenable to extensive
ACID operations.

In addition each file under WebDAV management has the potential for an associated but
independent metadata file. This of course means for every DAV-specific resource file activity
there is at least a file-system action to check for a metadata file and for some actions such as
COPY the potential for an associated but entirely independent file operation.

Of course WebDAV was not intended or designed as a general file-system protocol but one for
distributed management of somewhat restricted collections of Web-related resources and so
in context probably works well enough.

See sections below on file-system operation method restrictions.

Caution
If using WebDAV in any serious fashion the likes of

$ HTTPD/DO=RESTART=NOW

WebDAV 6–1

during server WebDav file-system modifications is a recipe for inconsistency and/or
corruption!

References

These are the resources used during WASD WebDAV development.

• WebDAV in general:

http://webdav.org/
http://en.wikipedia.org/wiki/Webdav
http://tools.ietf.org/html/rfc4918
http://tools.ietf.org/html/rfc4331 (quota)
http://tools.ietf.org/html/rfc2518 (obsoleted by RFC 4918)

• WebDAV: Next-Generation Collaborative Web Authoring
Lisa Dusseault, 2003 ISBN: 0130652083

• Using Expat by Clark Cooper:

http://en.wikipedia.org/wiki/Expat_(XML)
http://www.xml.com/pub/a/1999/09/expat/index.html
http://www.xml.com/lpt/a/47

Client Tools

All these have been used during WASD WebDAV development.

• A comprehensive but not exhaustive list
http://www.webdavsystem.com/server/access/
http://www.webdavsystem.com/server/access/clients_comparison

• DAVExplorer - a Java-based GUI Explorer-style file navigation tool
http://www.davexplorer.org/

• cadaver - a command-line WebDAV client for *x
http://www.webdav.org/cadaver/

• davfs2 - a mountable WebDAV file-system for Linux
http://savannah.nongnu.org/projects/davfs2

• The WebDAV URL handling of KDE 4.2 Dolphin (v1.2)
http://www.webdavsystem.com/server/access/konqueror (yup, I know!)
In contrast to Gnome as reported below, KDE and its KIO/Dolphin behave extrordinarily
well.

• The WebDAV URL handling of Gnome Nautilus (2.26.2, gvfs/1.2.2)
http://www.webdavsystem.com/server/access/gnome_nautilus
As at publication, Gnome/gvfs/Nautilus has quite a number of behavioural prob-
lems with associated Bugzilla items. Don’t expect it to behave reasonably!

• The WebDAV handling of Apple Mac OS X (10.6) Finder
http://www.apple.com/macosx/what-is-macosx/dock-and-finder.html
http://www.webdavsystem.com/server/access/macosx

6–2 WebDAV

• Windows Explorer - and the associated mini-director, et.al., on XP (not Vista).
See Section 6.6 below.

• Another Windows option - try before you buy (i.e. commercial product).
‘‘WebDrive is more than just an FTP Client.’’ Indeed! It’s functional WebDAV drive-letter
client.
http://www.webdrive.com/

• And if you really need effective WebDAV on a Windows platform ...
‘‘BitKinex integrates the fuctionality of an innovative FTP, SFTP and WebDAV client for
Windows.’’
And it’s FREEWARE!
http://www.bitkinex.com/

6.1 HTTP Methods Supported
A list of WebDAV methods, what WASD does with them, and any limitations or restrictions.
Some of these are familiar HTTP/1.n methods and other are RFC 4981 specific. Some of
the HTTP/1.n methods are overloaded with additional or variant behaviours when used in a
WebDAV context. Issues of atomicity with the manipulation of file-system trees containing
numbers of individual files makes strict RFC 4918 compliance difficult. See ‘‘ . . . Restrictions’’
below.

WebDAV HTTP Methods

Method Description

COPY** Reproduces both single resources (files) and collections (directory trees).
Will overwrite files (if specified by the request) but will respond 209
(Conflict) if it would overwrite a tree.

DELETE** deletes files and directory trees

GET just the vanilla HTTP/1.1 behaviour

HEAD ditto

LOCK** see WEBDAV LOCKING below

MKCOL** create a directory

MOVE** Moves (rename or copy) a file or a directory tree. Will ’overwrite’ files
(if specified by the request) but will respond 209 (Conflict) if it would
overwrite a tree.

OPTIONS If WebDAV is enabled and available for the path this reports the WebDAV
extension methods

PROPFIND** Retrieves the requested file characteristics, DAV lock status and ’dead’
properties for individual files, a directory and its child files, or a directory
tree.

PROPPATCH** set and remove ’dead’ meta-data properties

WebDAV 6–3

Method Description

PUT Against a WebDAV resource behaves a little differently to historical WASD
implementation of PUT.

UNLOCK** see WebDAV locking below

**WebDAV RFC 4918 method

WASD Statistics Reports gather WebDAV related data. Where a method can be used both
for vanilla HTTP/1.n and WebDAV purposes it is counted in WebDAV statistics if the request
header contains some other indication of a WebDAV activity.

6.1.1 COPY Restrictions

Does not comply with the overwrite:T directive for collections (does so for files). Will not
preemptively delete the existing tree. It returns a 209 (Conflict) response instead.

COPY does not maintain collection consistent URL namespace if a member resource cannot be
moved as required by RFC 4918. It should maintain the source subtree completely uncopied.
Instead it is best-effort and continues copying resources until exhausted. This is consistent
with file-system behaviour. The RFC 4918 requirement, while not impossible, is fraught with
issues inside a file-system.

6.1.2 DELETE Restrictions

Deletion of collections is particularly fraught with issues for a file-system. In userland it is
almost impossible to predetermine if an individual file in a directory tree is going to resist
deletion (due to locking, protections, etc) and in kernel land it’s probably no easier. It leaves
the undeleted tree hierachy (resource ancestors) intact. This is RFC 4918 compliant however!

So, in the case of WASD WebDAV it’s just best-effort and if something down the tree won’t
disappear, it just reports the failure in the 207 response and carries merrily on through the
tree regardless. This IS acceptable WebDAV server behaviour!

6.1.3 MOVE Restrictions

Does not comply with the overwrite:T directive for collections (does so for files). Will not
currently pre-emptively delete the existing tree. It returns a 209 (Conflict) response instead.

MOVE first attempts to rename the file or directory. This is reasonably efficient, especially
for directory trees but obviously only suitable for a target on the same disk volume. If a
rename failure is due to a different device it falls back to using a COPY then DELETE in
two separate phases. Needless-to-say this is hardly atomic and can lead to inconsistencies
between source and target.

MOVE does not maintain collection consistent URL namespace if a member resource cannot
be moved as required by RFC 4918. It should maintain the source subtree unmoved. Instead
it is best-effort and continues moving resources until exhausted. This is consistent with file-
system behaviour. The RFC 4918 requirement, while not impossible, is fraught with issues
inside a file-system.

6–4 WebDAV

6.1.4 If: Restrictions

The conditional "If:" request header field does not have full RFC 4918 support. It implements
lock token and etag token processing with parenthetical OR and NOT processing. For
unsupported features WATCH reports that the header was not understood and always returns
an abort status. WebDAV "If:" processing is an extrodinarily complex kludge for on-the-fly
decision making by the server and much of what I have read indicates most clients only ever
use extremely simple conditions anyway.

6.2 WebDAV Configuration
WebDAV and its features are globally enabled and configured using directives contained in
the WASD_CONFIG_GLOBAL configuration file.

WebDAV Global Configuration

Directive Description

[PutMaxKBytes] maximum size of a file (PUT and POST)

[WebDAV] This directive enables and disables WebDAV.

[WebDAVlocking] Enables and disables WebDAV locking.

[WebDAVlockTimeoutDefault] see Locking Timeout

[WebDAVlockTimeoutMax] see Locking Timeout

[WebDAVlockCollectionDepth] See Locking Depth

[WebDAVmetaDir] See Section 6.3

[WebDAVquota] Enables and disables RFC 4331 functionality (disk quota
reporting).

In addition these and other configurations are provided on a per-path basis using mapping
rules.

6.2.1 WebDAV Set Rules

WASD Request processing rules (see ‘‘WASD Web Services - Install and Config’’) may be used
on a per-path basis to modify (some) global configuration settings and provide other WevDAV
configuation.

WebDAV Set Rules

WebDAV 6–5

Rule Description

ODS=NAME=8BIT | UTF8 | DEFAULT When a file is PUT using WebDAV (or upload), for non-
7bit ASCII file names use native ODS-5 8bit syntax
(default) or UTF-8 encoded character sequences (see
Section 6.2.2)

PUT=MAX=<integer> | * Maximum number of kilobytes file size, if "*" then
effectively unlimited (per-path equivalent of the global
directive [PutMaxKBytes]).

WEBDAV=[NO]HIDDEN list (default) or hide U*x hidden files (i.e. those with
names beginning with period)

WEBDAV=[NO]LOCK allow/apply WebDAV locking to this path

WEBDAV=[NO]PROFILE WebDAV access according to SYSUAF profile

WEBDAV=[NO]PROP allow/apply WebDAV ’dead’ property(ies) to this path

WEBDAV=[NO]PUT=LOCK a resource must be locked before a PUT is allowed

WEBDAV=[NO]READ WebDAV methods allowed read this tree

WEBDAV=[NO]SERVER WebDAV access as server account (best effort)

WEBDAV=[NO]WINPROP when NOWINPROP windows properties are ignored and
emulated

WEBDAV=[NO]WRITE WebDAV methods allowed write to this path (implied
read)

WEBDAV=LOCK=TIMEOUT=DEFAULT= hh:mm:ss

WEBDAV=LOCK=TIMEOUT=MAX= hh:mm:ss

WEBDAV=META=DIR= per-path equivalent of global [WevbDAVmetaDir] (see
Section 6.3)

An essential function of the path setting rules is for specifying which paths in server Web-
space are allowed to be accessed using the WebDAV protocol and what sort of access (read,
write, etc.) that path is allowed.

6.2.2 File Naming

By default files that are PUT via WebDAV (or upload) support the ISO Latin-1 character set.
ASCII and non-7-bit file names use the native ODS-5 syntax. Where character sets other
than ISO Latin-1, or where compatibility with other WebDAV implementations is desired
(e.g. Apache), a path can be set to allow file names supplied using UTF-8 sequences.

For example, the English language word ‘‘naïve’’, , having a diaeresis mark over the ‘‘i’’
character (indicating it is pronounced separately from the preceding vowel) is commonly
respresented using the 8 bit character 0xEF, or as the two byte UTF-8 sequence 0xC3AF.
This word if used as the file name with a type (extension) of ‘‘.TXT’’ by default would have
the sequence of 8-bit characters

6–6 WebDAV

0x6E 0x61 0xEF 0x76 0x65 0x2e 0x54 0x58 0x54

and if the path had been set ods=name=utf8 the sequence would be

0x6E 0x61 0xC3 0xAF 0x76 0x65 0x2E 0x54 0x58 0x54

‘‘Index of’’ (directory) listings will honour a path set ods=name=utf8 and make the listing
character set UTF-8 resulting in a browser correctly rendering the name (WebDAV listings
are by definition UTF-8).

File Name Ambiguity

While files and directories created via WebDAV will have a consistent naming schema applied
those created by applications or manual operation on the VMS system can result in files that
are not accessible with WebDAV.

For example the file name

This^_is^_an^_EXAMPLE^.txt.;1

would be presented to the client as

This is an EXAMPLE.txt

which when provided in a URL as

This%20is%20an%20EXAMPLE.txt

and translated from that URL into the file specification

This^_is^_an^_EXAMPLE.txt;1

of course will not be able to be accessed.

In addition, the two files

This^_is^_an^_EXAMPLE.txt;1
This^_is^_an^_EXAMPLE^.txt.;1

are distinct in the file-system, independently parsed from the directory structure, would be
presented to the client as consecutive entries having the same name, with only the accessible
file name actually available.

This is an EXAMPLE.txt
This is an EXAMPLE.txt

To avoid this situation a potentially ambiguous file name containing an escaped period and
no type (extension) is ignored by directory listings and WebDAV property lists. When an
ambiguous file name is detected it is reported in WATCH reports.

Avoid ‘‘Interesting’’ File Names
While most of these are corner-cases it is best to try and avoid interesting file names
that can challenge the rather convoluted VMS file-system environment. Inaccessible
file names cannot of course be deleted or renamed via WebDAV and may result
in directory (folder) deletion problems. These situations generally require manual
intervention.

WebDAV 6–7

6.2.3 File-system Access

Is controlled using the mapping rules:

File-system Access

Rule Description

WEBDAV=PROFILE access using request SYSUAF-authenticated security profile

WEBDAV=WRITE unconditional permission to read/write

WEBDAV=READ unconditional permission to read

WEBDAV=SERVER access using server account permissions

All access by WebDAV operations must have at least one set against the path. If
access is permitted by one of the above settings SYSPRV is enabled to allow that ac-
cess using the server account. Therefore files and directories should have a SYS-
TEM:READ+WRITE+EXECUTE+DELETE protection or equivalent ACL permissions, or the
access may fail totally or in some part of a supposedly atomic action.

These file-system access settings are applied in the order listed above. That is, if a path
successively has one or more of the above settings applied during rule processing, when it
comes to applying those access controls, SYSUAF profile is applied, then if no profile SETing
access to read/write, then to read-only, then access via the server account.

In addition WebDAV access requires an authorisation rule against each path.

6.2.4 File-system Authorisation

All access by WebDAV operations must have one set against the path.

All WebDAV access is a combination of WASD_CONFIG_MAP path setting and WASD_
CONFIG_AUTH authorisation permissions. The least permissive of the two overrides the
more. The combination of an authorisation rule and a path mapping rule mitigates the
chance of opening unintended access into the file-system.

These is the test-bench environment used during development:

WASD_CONFIG_MAP
pass /dweb/* /dweb/* ods=5 webdav=write webdav=nowinprop

WASD_CONFIG_AUTH
["KLAATU"=WASD_VMS_RW=id]
/dweb/* r+w

Note that WebDAV read/write access is a combination of the mapping and the authorisation
rule (mapping WEBDAV=READ overrides authorisation read+write). Expect complications
with Microsoft environments.

For test-benching you could avoid authorisation issues completely with:

WASD_CONFIG_AUTH
[world]
/dweb/* r+w

6–8 WebDAV

6.2.5 Concurrent Authorisation

A common requirement is to provide concurrent general access and authorised WebDAV
acccess to the same Web-space. This is accomplished by using two paths mapped into the
same file-system space, the general access (non-authorised) path, and a WebDAV (authorised)
path. The WebDAV client uses the authorised path and can then apply WebDAV methods to
maintain the resources.

WASD_CONFIG_MAP
pass /web/* /web/* ods=5
pass /davweb/* /web/* ods=5 webdav=profile webdav=nowinprop

WASD_CONFIG_AUTH
["KLAATU"=WASD_VMS_RW=id]
/davweb/* r+w

6.2.6 Real-World Example

The following configuration is taken from a site using WebDAV to allow users to manage their
Web presence. The user mapping is a fairly standard configuration for VMS accounts (see
‘‘WASD Web Services - Install and Config’’). User Web areas are in the [.WWW] subdirectory
of the account home area.

WASD_CONFIG_MAP
general and WebDAV access (order is important)

user /~*/dav/* /*/www/* webdav=profile notepad=webdav
user /~*/dav /*/www webdav=profile notepad=webdav
if (pass:-1 && notepad:webdav) pass /~*/dav/* /d1/*/www/*
if (pass:-1 && notepad:webdav) pass /~*/dav/* /d2/*/www/*

user /~*/* /*/www/* dir=access
if (pass:-1) pass /~*/* /d1/*/www/*
if (pass:-1) pass /~*/* /d2/*/www/*

The four WebDAV access rules are located before the three general user access rules. The
WebDAV rules are more specific. The first USER rule maps subdirectories - and the parent if
a trailing slash is included. The second USER rule maps the parent directory for user agents
that do not include trailing slash on their directory specifications (most it seems).

The second pair of rules reverse-maps the VMS file-system specifications represented by the
result (right side) of the PASS rule into the path represented by the template (left side) of
the PASS rule. Mapping from file-specifications to paths is necessary because of the way
the PROPFIND method searches the file-system and then reports its results to the client as
URLs.

The use of the notepad rule with a string of ‘‘webdav’’ (the actual string is not significant as
long as it is unique within the rules) is used to conditionally process the reverse-mapping
rules. They will be applied only to the requests originally mapped by the USER rules.
The pass:-1 ensures the rules are only applied during reverse-mapping, not during request
mapping.

The fifth rules maps general Web access to the user area. Remember, web access is to a user
home subdirectory [.WWW].

WebDAV 6–9

The sixth and seventh rules reverse-map the VMS file-system specifications for the general
USER rules for similar reasons to those described above. Why two? The user directories
occur across two disk volumes and so each must be reverse-mapped.

WASD_CONFIG_AUTH

["VMS username/password"=WASD_VMS_RW=id]
/~*/dav/* read+write,profile,https:
/~*/dav read+write,profile,https:

As noted above, WASD WebDAV requires both mapping and authorization rules (even for
‘‘world’’ - or non-authenticated - access).

In this case authorisation is only required for WebDAV access. There are two rules. The first
authorises subdirectories and parent directories for agents that supply a trailing slash. The
second for agents that do not provide a trailing slash.

Why use . . .

. . . two rules for each location? Why

user /~*/dav/* /*/www/*
user /~*/dav /*/www

rather than

user /~*/dav* /*/www*

which would accomplish a similar result?

For finer control. The first only matches requests with a path of ‘‘/~user/dav/subdir/’’
and ‘‘/~user/dav’’, whereas the latter matches ‘‘/~user/dav/subdir/’’ and ‘‘/~user/dav’’ and
‘‘/~user/david/’’ and ‘‘/~user/davros’’, etc.

6.3 WebDAV Metadata
Metadata is data (information) about data. WebDAV uses the concept of a resource property.
There are ‘‘live’’ properties and ‘‘dead’’ properties. Essentially the live properties are the
dynamic characteristics of a file-system object represented by creation and modification date-
times, object size, etc. WebDAV dead properties are those supplied by WebDAV clients as
XML entities and stored associated with the particular WebDAV object, in WASD’s case the
file-system object (file or directory). WASD also uses the file metadata to store resource lock
data (see Section 6.4).

Metadata Files

WASD manages resource metadata using a separate file associated by name with the data file.
This is done for reasons of programmatic simplicity and for the convenience of any command-
line owner or sysadmin of the resources. No specialised tools are required. This metadata
file can be stored in one of three locations.

1. By default, WASD uses a metadata file in the same directory and the same name with
‘‘_ _wasdav’’ appended to the extension (type). All non-WebDAV WASD functionality

6–10 WebDAV

ignores ‘‘*.*_ _wasdav;’’ files (e.g. directory listing, file GET). Of course other applications
(e.g. directory listing) do not.

$ DIRECTORY/SIZE/DATE 01234*.*

Directory WEB:[DAVweb]

01234^.56789.TXT;1 0.50KB 8-JUN-2009 23:07:19.26
01234^.56789.txt__wasdav;1

1KB 19-JUN-2009 03:20:34.50
0123456789.TXT;1 0.50KB 8-JUN-2009 23:06:59.16
0123456789.txt__wasdav;1

1KB 19-JUN-2009 03:19:14.67

2. An alternate but still local location, is in the WASD_CONFIG_GLOBAL [WebDAVmetadir]
globally specified, or per-path SET /path webdav=meta=dir directives. If specified as a
subdirectory the metadata file is stored in a subdirectory of the data file directory using
the same name with ‘‘_ _wasdav’’ appended to the extension (type). This is owned by the
owner of the parent directory. The metadata directory does not appear in WASD WebDAV
or file system listings. Choose something unique as the name cannot be used elsewhere
in WebDAV space.

For example, with the global directive

WASD_CONFIG_GLOBAL
[WebDAVmetaDir] [.^.dav]

specifying a subdirectory with a name containing a leading period (i.e. a U*x hidden file),
the data files

Directory WEB:[DAVweb]

01234^.56789.TXT;1 0.50KB 8-JUN-2009 23:07:19.26
0123456789.TXT;1 0.50KB 8-JUN-2009 23:06:59.16

would have the associated metadata files

Directory WEB:[DAVweb.^.dav]

01234^.56789.txt__wasdav;1
1KB 19-JUN-2009 03:20:34.50

0123456789.txt__wasdav;1
1KB 19-JUN-2009 03:20:24.77

3. The final alternative uses the same directives as above but specifies a full directory path.
In this case WebDAV metadata is stored completely separately from the data. This can
be anywhere in available file-space. The web server account requires full access to this
directory, with the simplest method of ensuring this to give ownership to the directory.
This global location is only suitable for ODS-5 volumes. Sixteen hexadecimal named
subdirectories are used to partition metadata files with file names generated using data
file full name escaped using extended parse syntax. Using this approach a sysadmin can
easily locate specific metadata files if required.

For example, with the global directive

WASD_CONFIG_GLOBAL
[WebDAVmetaDir] DKA0:[WASDAVMETA]

the data files

WebDAV 6–11

Directory WEB:[DAVweb]

01234^.56789.TXT;1 0.50KB 8-JUN-2009 23:07:19.26
0123456789.TXT;1 0.50KB 8-JUN-2009 23:06:59.16

would have the associated metadata files

Directory DKA0:[WASDAVMETA.06]

web^:^[davweb^]01234^.56789.txt__wasdav;1
1KB 19-JUN-2009 03:21:34.40

web^:^[davweb^]0123456789.txt__wasdav;1
1KB 19-JUN-2009 03:21:14.67

Directory Metadata

The metadata file associated with a directory is stored in the same metadata location as files
contained by that directory (not in the metadata location associated with the parent directory
that contains the directory file). This metadata file is named ‘‘.DIR_ _wasdav’’ (i.e. no name,
just an extension), with the following example illustrating how this would appear in each of
the three metadata locations, for a subdirectory named ‘‘New Folder’’.

WEB:[DAVweb.New^_Folder].DIR__wasdav;1
WEB:[DAVweb.New^_Folder.^.dav].DIR__wasdav;1
DKA0:[WASDAVMETA.06]web^:^[davweb^.new^_folder^].dir__wasdav;1

Metadata XML

All metadata is stored using XML. Multiple XML data can be contained in a single metadata
file. Each can be individually manipulated by a WebDAV client. The property elements are
stored as-supplied by the client. It is presumed that their XML well-formedness is guaranteed
by the original request XML parsing. Metadata files have content similar to the following:

$ TYPE 0123456789.txt__wasdav;1
<?xml version="1.0" encoding="UTF-8"?>
<WASDAV:data xmlns:WASDAV="WASD.VMS.WebDAV"
updated="2009-06-18T17:49:14Z 19-JUN-2009 03:19:14">
<WASDAV:lock
token="opaquelocktoken:4D462D61B0E0427F19B425EBEEF2CFF6"
depth="0"
type="write"
scope="exclusive"
timeout="Second-86400"
expires="2009-06-20T22:49:14Z 21-JUN-2009 08:19:14">
<WASDAV:owner><NS:href xmlns:NS="DAV:">MGD</NS:href></WASDAV:owner>
</WASDAV:lock>
<WASDAV:prop>
<NS:one xmlns:NS="two">three</NS:one>
</WASDAV:prop>
<WASDAV:prop>
<NS:four xmlns:NS="five">six</NS:four>
</WASDAV:prop>
<WASDAV:prop>
<NS:seven xmlns:NS="eight">nine</NS:seven>
</WASDAV:prop>
</WASDAV:data>

6–12 WebDAV

This metadata example contains four properties; an exclusive write lock owned by ‘‘MGD’’
and three set by a client in three different (contrived) namespaces.

Metadata should not be edited manually . . .
. . . unless you really, really know what you’re doing. WASD deletes meta-data files

it does not understand or otherwise considers damaged (with some resultant loss of
information). Of course you can, for example to remove a lock on a resource, but you
run the (small) risk of a ‘‘lost-update’’ and other complications. And, again of course,
full metadata can be deleted at the command-line.

Microsoft Metadata

An example of such property meta-data generated by a Microsoft Windows (not Internet)
Explorer client (example wrapped for presentation):

<?xml version="1.0" encoding="UTF-8"?>
<WASDAV:data xmlns:WASDAV="WASD.VMS.WebDAV"
updated="2007-07-23T01:39:11Z">
<WASDAV:prop>
<NS:Win32CreationTime xmlns:NS="urn:schemas-microsoft-com:">
Tue, 26 Jun 2007 02:00:48 GMT</NS:Win32CreationTime>
</WASDAV:prop>
<WASDAV:prop>
<NS:Win32LastAccessTime xmlns:NS="urn:schemas-microsoft-com:">
Mon, 23 Jul 2007 01:52:32 GMT</NS:Win32LastAccessTime>
</WASDAV:prop>
<WASDAV:prop>
<NS:Win32LastModifiedTime xmlns:NS="urn:schemas-microsoft-com:">
Mon, 23 Jul 2007 01:52:32 GMT</NS:Win32LastModifiedTime>
</WASDAV:prop>
<WASDAV:prop>
<NS:Win32FileAttributes xmlns:NS="urn:schemas-microsoft-com:">
00000020</NS:Win32FileAttributes>
</WASDAV:prop>
</WASDAV:data>

Every file written or modified by Windows Explorer generates this sort of metadata which is
then stored in an associated metadata file and read each time the data file is accessed. Some
might consider this unnecessary clutter in most circumstances (I do). WASD allows this
metadata to be suppressed and equivalent data generated (fudged) from file live properties
when accessed - often sufficient for purpose. To suppress the actual processing of Windows

Explorer metadata set a path using the WEBDAV=NOWINPROP in WASD_CONFIG_MAP.

set /webdav/* webdav=NOwinprop

6.4 WebDAV Locking
For efficiency and functionality considerations WebDAV locking may be enabled and disabled
(default) as global functionality using the WASD_CONFIG_GLOBAL [WebDAVlocking] di-
rective. Additionally the WEBVDAV=[NO]LOCKING path SETing can configure this on a
per-path basis.

WebDAV 6–13

Write Access Only

In common with RFC 4918 WASD WebDAV locking controls only write access. Both exclusive
and shared locks are provided. Locking applies to the DELETE, LOCK, MKCOL, MOVE,
PROPPATCH, PUT, and UNLOCK methods.

Locking Depth

WASD WebDAV locking checks parent collections to a configurable depth. WASD_CONFIG_
GLOBAL directive [WebDAVlockCollectionDepth] where the default (0 or 1) checks only
WebDAV locking on files, 2 WebDAV locking on the parent directory, 3 on the grandparent, 4
the great-grandparent, etc. Of course each level can add significant latency (and expense) to
some operations.

Lock Depth 0
Real world experience has suggested locking depth should be maintained at the default
0 (or 1), allowing the client explicitly to manage and negotiate hierarchies of locking
if required. WebDAV clients (probably correctly) assume a minimally compliant and
relatively unsophisticated WebDAV server.

For more information on locking operation and implementation details see the DAVLOCK.C
module and for meta-data in general the DAVMETA.C module.

Locking Timeout

When a client locks a resource it can specify the period for the lock. In the absence of such a
specification WASD will apply the [WebDAVlockTimeoutDefault] value (by default 0-01:00:00
- one hour). WASD also applies the [WebDAVlockTimeoutMax] maximum lock period (by
default 7-00:00:00 - one week). When the maximum period expires the lock is no longer
valid.

VMS DLM Locking

WASD uses VMS locking to queue and arbitrate access to WebDAV resources and meta-files.

Two lock modes are employed; ’exclusive’, when changes are to be made to the resource or
its meta-data, and ’concurrent read’, when resource and/or meta-data are only to be read.
Concurrent read locks are compatible, but an exclusive queued against a resource currently
being read waits, as does a read against a current exclusive.

WASD takes out its own VMS DLM locks on resources (files and directories) before beginning
any WebDAV operation, and these prevent conflict with other WASD WebDAV operations on
the same system or cluster, but RMS does not use these nor does WASD use RMS locks (except
when actually acessing the file-system of course), and so there is potential for interactions
between the two domains (in common with general file-system actvities). WASD WebDAV
deliberately does not try to block file-system actions from other processing (except where
RMS locks/blocks). Its own DLM locking is purely for internal purposes.

6–14 WebDAV

6.5 Some Wrinkles
Some application/environment-specific considerations when using WASD WebDAV. Please
report any you encounter for future inclusion in this section. Also see Section 6.6 immediately
below.

6.5.1 OS X Finder

OS X Finder requires [WebDAVlocking] enabled for read/write access, otherwise access will
be read-only.

6.5.2 Gnome/gvfs/Nautilus

As at publication, Gnome/gvfs/Nautilus has quite a number of behavioural problems with
associated Bugzilla items. Don’t expect it to behave well! This has been my experience.

6.5.3 Dreamweaver

Dreamwever 8 (at least, the only version I have access to) insists on using a URI with a
trailing ‘‘/./’’ occasionally (I’m guessing to specify the ‘‘current’’ directory - cf. ‘‘/../’’, or ‘‘parent’’
syntax). Just absorb this internally using an appropriate mapping internal redirect.

redirect /webdav/**/./ /webdav/*/

6.6 Microsoft Miscellanea
A cornucopia of of minor and major considerations!

Microsoft approach WebDAV in their own inimitable fashion. Hence Microsoft agents,
considering their ubiquity, including their mini-redirector are specifically looked for and
functionality modified to accomodate them.

The following is a list topics/issues that were encountered/investigated during WASD WebDAV
development. They may or may not be applicable to your site.

Some general references:

http://greenbytes.de/tech/webdav/webdav-redirector-list.html
http://greenbytes.de/tech/webdav/webfolder-client-list.html
http://www.zorched.net/2006/03/01/more-webdav-tips-tricks-and-bugs/
http://www.webdavsystem.com/server/documentation/troubleshooting
http://www.webdavsystem.com/documentation/troubleshooting
http://code.google.com/p/sabredav/wiki/Windows
http://ulihansen.kicks-ass.net/aero/webdav/
http://chapters.marssociety.org/webdav/

DOS/Windows command-line network configuration:

C:\> NET USE Z: http://the.host.name/folder/
C:\> NET USE Z: /DELETE

WebDAV 6–15

6.6.1 Mapping

Microsoft agents (at least) seem to request the server OPTIONS of the server root regardless
of any path provided with the NET USE or other network drive mapping employed. To
selectively map such a request into a path that has WebDAV enabled on it (and will therefore
respond with the DAV-related options) use a conditional redirect rule. For example

if (webdav:)
if (request-method:OPTIONS) redirect / /dav-path/

endif

or if only required for MS agents then something more specific

if (webdav:MSagent)
if (request-method:OPTIONS) redirect / /dav-path/

endif

Subsequent rules will probably be required to map typeless directory requests to the actual
directory required.

redirect /dav-path /dav-path/
pass /dav-path/* /dav_root/* webdav=read

6.6.2 FrontPage Extensions

Requests containing paths /_vti_inf.html and /_vti_bin/* are related to FrontPage protocol
discovery probing. They can be adequately handled using a mapping rule lsuch as the
following:

pass /_vti_* "404 Not an MS platform!"

6.6.3 Avoiding Microsoft Property Clutter

See Microsoft Metadata.

6.6.4 OPTIONS header "MS-Author-Via: DAV"

http://msdn2.microsoft.com/en-us/library/ms691698.aspx

If the server’s response does not contain an MS-Author-Via header, the OLE DB Provider for
Internet Publishing loads the WEC and WebDAV protocol drivers one at a time (WEC first,
WebDAV second) and asks them, "Do you know how to handle this URL?", specifying the exact
URL passed in by the client. The first protocol which responds "yes" is selected. If neither
protocol driver responds "yes" then the method which triggered the automatic driver selection
(usually IBindResource::Bind) fails with an OLE DB Provider for Internet Publishing specific
error code IPP_E_SERVERTYPE_NOT_SUPPORTED.

6–16 WebDAV

6.6.5 Repairing broken XP Web Folders

http://chapters.marssociety.org/webdav/

Some Windows XP machines have a broken Web Folders installation. Microsoft includes a
Web Folders repair utility built in to Windows to correct the problem. Use the following steps
to fix the problem:

1. Click on the "Start" menu in the lower left corner, and select "Run..."

2. Type in "webfldrs.msi" and click the "OK" button.

3. Click on the "Select reinstall mode" button.

4. Select *ALL* of the checkboxes *except* for the second one ("Reinstall only if file is
missing").

5. Click on the "OK" button.

6. Click on the "Reinstall" button.

7. After the reinstallation is complete, reboot the computer.

6.6.6 Adding a port number to the webfolder-address

Attach the port-number (80 by default) to the http-address you enter into the field of the "My
Network Places"-assistant. As you can see in the following image and the linked screenshot,
this will force Windows XP to use the "Microsoft Data Access Internet Publishing Provider
DAV 1.1" mechanism instead of "Microsoft-WebDAV-MiniRedir/5.1.2600".

6.6.7 Adding a number-sign ("#") to the webfolder-address

It is also possible to add the number sign # to the http-address you enter into the field of
the "My Network Places"-assistant. As you can see in the following image and the linked
screenshot, this will also force Windows XP to use the "Microsoft Data Access Internet
Publishing Provider DAV 1.1" mechanism instead of "Microsoft-WebDAV-MiniRedir/5.1.2600".

http://the.host.name/folder#

6.6.8 Force Windows XP to use Basic Authentication

There is a third way to get this working from the client-site. As described in the Microsoft
Knowledge Base, Article ID: 841215, Windows XP disables "Basic Auth" in his "Microsoft-
WebDAV-MiniRedir/5.1.2600"-mechanism by default for security reasons. See description
below.

6.6.9 Microsoft XP Explorer BASIC Authentication

http://www.microsoft.com/technet/prodtechnol/winxppro/maintain/sp2netwk.mspx

You can enable BasicAuth by adding the following registry key and setting it to a non-zero
value:

HKEY_LOCAL_MACHINE\SYSTEM
\CurrentControlSet\Services\WebClient\Parameters\UseBasicAuth (DWORD)

WebDAV 6–17

If you delete the registry key or set it to 0, the behavior reverts to the default, or disabling
the use of BasicAuth.

Disabling Basic Authentication over a clear channel:

Because the DAVRdr is part of the remote file-system stack, a computer is open to attack
whenever an attempt is made to remotely access files. Although the threat to other
applications that use the Internet APIs is less severe than it is for the DAVRdr, a similar
attack is possible whenever an application (or the user) attempts to access a URL. For this
reason, WinInet is exposing the mechanism by which the DAVRdr disables BasicAuth to other
users of the Internet APIs.

With Windows XP Service Pack 2, there are two ways to block the use of Basic Authentication
over clear (or unencrypted) channels:

Create the following registry key and set it to a non-zero value.

HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion
\InternetSettings\DisableBasicOverClearChannel (DWORD)

This prevents WININET from attempting to use BasicAuth unless the channel is secured
(HTTPS or SSL).

The application can disable the use of BasicAuth for its connections by setting the AUTH_
FLAG_DISABLE_BASIC_CLEARCHANNEL flag (0x4) in the value supplied in the call to
InternetSetOption using INTERNET_OPTION_AUTH_FLAGS.

*** AND THEN RESTART WINDOWS ***

6.6.10 Microsoft Windows 7 BASIC Authentication

You can enable BasicAuth by setting the following registry key to the value 3 and restarting
the WebClient service:

HKEY_LOCAL_MACHINE\SYSTEM
\CurrentControlSet\Services\WebClient\Parameters\BasicAuthLevel (DWORD)

6.6.11 Error 0x800700DF: The file size exceeds the limit allowed and cannot be
saved

"In my case I try to copy file over WEBDAV to WEB Client connection e.g. I have mapped
drive to web site. file is about 70MB I can copy small files from the same WEBDav folder."

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\WebClient\Parameters

1. Right click on the FileSizeLimitInBytes and click Modify

2. Click on Decimal

3. In the Value data box, type 4294967295, and then click OK. Note this sets the maximum
you can download from the Webdav to 4 gig at one time, I havent figured out how to make
it unlimited so if you want to download more you need to split it up.

http://social.answers.microsoft.com/Forums/en/xphardware/thread/d208bba6-920c-4639-bd45-
f345f462934f

6–18 WebDAV

Chapter 7

Proxy Services

A proxy server acts as an intermediary between Web clients and Web servers. It listens
for requests from the clients and forwards these to remote servers. The proxy server then
receives the responses from the servers and returns them to the clients. Why go to this
trouble? There are several reasons, the most common being:

• To allow internal clients access to the Internet from behind a firewall. Browsers behind
the firewall have full Web access via the proxy system.

• To provide controlled access to internal resources for external clients. The proxy server
provides a managed gateway through a firewall into an organisation’s Web resources.

• Many proxy servers provide caching, or local storage, of responses. For frequent or
commonly accessed resources this can not only significantly reduce apparent network
latency but also greatly reduce the total traffic downloaded by a site.

• For anonymity. Although often related directly to firewall security considerations, it can
also sometimes be an advantage to just not reveal the exact source of Web transactions
from within your local network.

Proxy Serving Quick-Start

No additional software needs to be installed to provide proxy serving.

Proxy servering is essentially configured using a combination of configuration directives
in WASD_CONFIG_GLOBAL and WASD_CONFIG_SERVICE to enable proxy serving both
globally and then for allow a specific service to make outgoing connections, along with
mapping directives in WASD_CONFIG_MAP to control and direct those outgoing connections.

The following steps provide a brief outline of proxy configuration.

1. Enable proxy serving and specify which particular services are to be proxies (Section 7.1.1
and ‘‘WASD Web Services - Install and Config’’),

2. If proxy caching is required (most probably, see Section 7.2)

• Decide on a cache device, create the cache root directory, modify server startup
procedures to include the WASD_CACHE_ROOT logical name (Section 7.2.1).

Proxy Services 7–1

• Enable caching on required services (Section 7.2.2).

• Adjust relevant cache management configuration parameters if required (Sec-
tion 7.2.3).

• If required adjust cache retention parameter (Section 7.2.5).

3. If providing SSL tunneling (proxy of Secure Sockets Layer transactions) add/modify a
service for that (Section 7.3).

4. Add WASD_CONFIG_MAP mapping rules for controlling this/these services (Sec-
tion 7.1.5, Section 7.3.2, and Section 7.4).

5. Restart server (HTTPD/DO=RESTART).

Error Messages

When proxy processing is enabled and WASD_CONFIG_GLOBAL directive [ReportBasicOnly]
is disabled it is necessary to make adjustments to the contents of the WASD_CONFIG_MSG
message configuration file [status] item beginning ‘‘Additional Information’’. Each of the
‘‘/httpd/-/statusnxx.html’’ links

1<I>xx</I>
2<I>xx</I>
3<I>xx</I>
4<I>xx</I>
5<I>xx</I>
Help

should be changed to include a local host component

1<I>xx</I>
2<I>xx</I>
3<I>xx</I>
4<I>xx</I>
5<I>xx</I>
Help

If this is not provided the links and any error report will be interpreted by the browser as
relative to the server the proxy was attempting to request from and the error explanation
will not be accessible.

7.1 HTTP Proxy Serving
WASD provides a proxy service for the HTTP scheme (prototcol).

Proxy serving generally relies on DNS resolution of the requested host name. DNS lookup
can introduce significant latency to transactions. To help ameliorate this WASD incorporates
a host name cache. To ensure cache consistency the contents are regularly flushed, after
which host names must use DNS lookup again, refreshing the information in the cache. The
period of this cache purge is contolled with the [ProxyHostCachePurgeHours] configuration
parameter.

7–2 Proxy Services

When a request is made by a proxy server is is common for it to add a line to the request
header stating that it is a forwarded request and the agent doing the forwarding. With WASD
proxying this line would look something like this:

Forwarded: by http://host.name.domain (HTTPd-WASD/8.4.0 OpenVMS/IA64 SSL)

It is enabled using the [ProxyForwarded] configuration parameter.

An additional, and perhaps more widely used facility, is the Squid extension field to the
proxied request header supplying the originating client host name or IP address.

X-Forwarded-For: client.host.name

It is enabled using the [ProxyXForwardedFor] configuration parameter.

7.1.1 Enabling A Proxy Service

Proxy serving is enabled on a global basis using the WASD_CONFIG_GLOBAL file [Proxy-
Serving] configuration parameter. After that each virtual service must have proxy function-
ality enabled as a per-service configuration.

WASD can configure services using the WASD_CONFIG_GLOBAL [service] directive, the
WASD_CONFIG_SERVICE configuration file, or even the /SERVICE= qualifier.

WASD_CONFIG_SERVICE

Using directives listed in ‘‘WASD Web Services - Install and Config’’ this example illustrates
configuring a non-proxy server (the disabled is the default and essentially redudant) and a
proxy service.

[[http://alpha.example.com:80]]
[ServiceProxy] disabled

[[http://alpha.example.com:8080]]
[ServiceProxy] enabled

7.1.2 Proxy Affinity

High performance/highly available proxy server configurations require more than one instance
configured and running. Whether this is done by running multiple instances on the same
host or one instance on multiple hosts, it leads to situations where successive requests will
be processed by different instances. As those instances don’t share a common name to IP
address cache, they will eventually use different IP addresses when trying to connect to an
origin server running on multiple hosts.

This may result in the following, user visible, issues:

• multiple requests for authentication (one from each origin host)

• loss of icons, images, javascripts, CSS because requests for these files, although they
return a 401 status, will not trigger a browser authentication dialog

• loss of context and performance issues where scripts/environments need to be started on
a new host (php, python, webware,...)

Proxy Services 7–3

For these reasons, the proxy server will make every effort to relay successive requests from a
given client to the same origin host as long as this one is available (built-in failover capability
will ultimately trigger the choice of a new host). This is known as client to origin affinity or
proxy affinity capability.

Proxy to origin server affinity is enabled using the following service configuration directive.

[[http://alpha.example.com:8080]]
[ServiceProxy] enabled
[ServiceProxyAffinity] enabled

Uses HTTP Cookies

Obviously the use of cookies must be enabled in the browser or this facility will not operate for
that client. After the first successful connection to an origin host, the proxy server will send
a cookie indicating the IP address used to the client browser. Upon subsequent requests,
this cookie will be used to select the same host. The cookie is named WasdProxyAffinity_

origin.host.name and the value simply the IP address in dotted decimal. This cookie is not
propagated beyond the proxy service but may be WATCHed by checking the Proxy Processing

item.

7.1.3 Proxy Bind

It is possible to make the outgoing request appear to originate from a particular source
address. The Network Interface must be able to bind to the specified IP address (i.e. it
cannot be an arbitrary address).

[[http://alpha.example.com:8080]]
[ServiceProxy] enabled
[ServiceProxyBind] 131.185.250.1

The same behaviour may be accomplished with an WASD_CONFIG_MAP mapping rule.

SET http://*.example.com proxy=bind=131.185.250.1

7.1.4 Proxy Chaining

Some sites may already be firewalled and have corporate proxy servers providing Internet
access. It is quite possible to use WASD proxying in this environment, where the WASD
server makes the proxied requests via the next proxy server in the hierarchy. This is known
as proxy chaining.

[[http://alpha.example.com:8080]]
[ServiceProxy] enabled
[ServiceProxyChain] next.proxy.host

Chaining may also be controlled on a virtual service or path basis using an WASD_CONFIG_
MAP mapping rule.

SET http://*.com proxy=chain=next.proxy.host:8080

7–4 Proxy Services

Chain Authorization

If the upstream proxy server requires authorization this may be supplied using a per-service
directive

[[http://alpha.example.com:8080]]
[ServiceProxy] enabled
[ServiceProxyChain] next.proxy.host
[ServiceProxyChainCred] basic:<username>:<password>

or via mapping rule

SET http://*.com proxy=chain=next.proxy.host:8080 \
proxy=chain=cred=basic:<username>:<password>

The basic: keyword allows WASD to appropriately encode the credentials. Basic authentica-
tion is the only scheme currently supported.

7.1.5 Controlling Proxy Serving

Requests at a service enabled for proxy processing are directed to proxy processing using a
fundamental rule which terminates rule processing and initiates the outgoing connection.

pass * http://

This rule and variant equivalents for FTP and CONNECT processing, and in combination
with other rules to purpose, are seen in the examples in this section on proxy.

Controlling both access-to and access-via proxy serving is possible.

Proxy Password

Access to the proxy service can be directly controlled through the use of WASD authorization.
Proxy authorization is distinct from general access authorization. It uses specific proxy

authorization fields provided by HTTP, and by this allows a proxied transaction to also
supply transaction authorization for the remote server. In the WASD_CONFIG_SERVICE
configuration file.

[[http://alpha.example.com:8080]]
[ServiceProxy] enabled
[ServiceProxyAuth] proxy

In addition to the service being specified as requiring authorization it is also necessary to
configure the source of the authentication. This is done using the WASD_CONFIG_AUTH
configuration file. The following example shows all requests for the proxy virtual service must
be authorized (GET and well as POST, etc.), although it is possible to restrict access to only
read (GET), preventing data being sent out via the server.

[[alpha.example.com:8080]]
["Proxy Access"=PROXY_ACCESS=id]
http://* read+write

Proxy Services 7–5

Chain Password

An up-stream, chained proxy server (Section 7.1.4) may be permitted to receive proxy authen-
tication from the client via a WASD proxy server using the CHAIN keyword. Unconfigured,
WASD does not propagate HTTP proxy authorization fields. Only one proxy server in a chain
can be authenticated against.

[[http://alpha.example.com:8080]]
[ServiceProxy] enabled
[ServiceProxyAuth] chain

Local Password

It is also possible to control proxy access via local authorization, although this is less flexible
by removing the ability to then pass authorization information to the remote service. In
other repects it is set up in the same way as proxy authorization, but enabled using the
LOCAL keyword.

[[http://alpha.example.com:8080]]
[ServiceProxy] enabled
[ServiceProxyAuth] local

Access Filtering

Extensive control of how, by whom and what a proxy service is used for may be exercised using
WASD general and conditional mapping ‘‘WASD Web Services - Install and Config’’ and ‘‘WASD
Web Services - Install and Config’’ possibly in the context of a virtual service specification for
the particular connect service host and port (see ‘‘WASD Web Services - Install and Config’’),
The following examples provide a small indication of how mapping could be used in a proxy
service context.

1. It is possible, though more often not practical, to regulate which hosts are connected to
via the proxy service. For example, the following rule forbids accessing any site with the
string ‘‘hacker’’ in it (for the proxy service ‘‘alpha . . . :8080’’.

[[alpha.example.com:8080]]
pass http://*hacker*/* "403 Proxy access to this host is forbidden."
pass http://*

2. Or as in the following example, only allow access to specific sites.

[[alpha.example.com:8080]]
pass http://*.org/*
pass http://*.digital.com/*
pass http://* "403 Proxy access to this host is forbidden."

3. It is also possible to restrict access via the proxy service to selected hosts on the internal
subnet. Here only a range of literal addresses plus a single host in another subnet are
allowed access to the service.

[[alpha.example.com:8080]]
pass http://* "403 Restricted access." ![ho:131.185.250.* ho:131.185.200.10]
pass http://*

7–6 Proxy Services

4. In the following example POSTing to a particular proxied servers is not allowed (why I
can’t imagine, but hey, this is an example!)

[[alpha.example.com:8080]]
pass http://subscribe.sexy.com/* "403 POSTing not allowed." [me:POST]
pass http://*

5. It is possible to redirect proxied requests to other sites.

[[alpha.example.com:8080]]
redirect http://www.sexy.com/* http://www.disney.com/
pass http://*

6. A proxy service is just a specialized capability of a general HTTP service. Therefore it
is quite in order for the one service to respond to standard HTTP requests as well as
proxy-format HTTP requests. To enforce the use of a particular service as proxy-only, add
a final rule to a virtual service’s mapping restricting non-proxy requests.

[[alpha.example.com:8080]]
pass http://*
pass /* "403 This is a proxy-only service."

7. This example provides the essentials when supporting reverse proxying. Note that
mappings may become quite complex when supporting access to resources across multiple
internal systems (e.g. access to directory icons).

[[main.corporate.server.com:80]]
pass /sales/* http://sales.corporate.server.com/*
pass /shipping/* http://shipping.corporate.server.com/*
pass /support/* http://support.corporate.server.com/*
pass * "403 Nothing to access here!"

Note
To expedite proxy mapping is it recommended to have a final rule for the proxy virtual
service that explicitly passes the request. This would most commonly be a permissive
pass as in example 1, could quite easily be an restrictive pass as in example 2, or a
combination as in example 6.

Request Modification

Using path mapping rules (see ‘‘WASD Web Services - Install and Config’’) it is possible
to remove or specifically set selected proxied request headers. Many headers are critical to
server processing but some are informational or otherwise amenable to change. This can be
undertaken using the SET mapping rule proxy=header=<parameter>.

For example, to have a proxy service suppress the ‘‘Referer:’’ request header:

WASD_CONFIG_MAP
set * proxy=header=referer

To modify the ‘‘Referer:’’ request header to a fixed URL:

set * proxy=header=referer=https://whatever/

To modify the ‘‘User-Agent:’’ request header to a specific string:

set * "proxy=header=user-agent=None of your business!"

Proxy Services 7–7

7.2 Caching
Caching involves using the local file-system for storage of responses that can be reused when
a request for the same URL is made. The WASD server does not have to be configured for
caching, it will provide proxied access without any caching taking place.

When a proxied request is processed, and the characteristics would allow the response to be
cached, a unique identifier generated from the URL is used to create a corresponding file
name. The response header and any body are stored in this file. This may be the data of an
HTML page, a graphic, etc.

When a proxied request is being processed, and the characteristics would allow the request
to be cached, the unique identifier generated allows for a previously created cache file to be
checked for. If it exists, and is current enough, the response is returned from it, instead of
from the remote server. If it exists and is no longer current the request is re-made to the
remote server, and the response if still cacheable is re-cached, keeping the contents current.
If it does not exist the response is delivered from the remote server.

Not all responses can be cached!

The main critera are for the response to be successful (200 status), general (i.e. one not in
response to a specialized query or action), and not too volatile (i.e. the same page may be
expected to be returned more than once, preferably over an extended period).

• Proxied requests can only be cached if . . .

• uses the GET method

• does not contain a query string

• is HTTP/1.n compliant (i.e. not HTTP/0.9)

• does not contain an "Authorization:" header field

• Proxied success responses will only be cached if . . .

• is HTTP/1.n compliant (i.e. not HTTP/0.9)

• HTTP status code 200 (success), 203 (non-authoritative), 300 (multiple choice), 301
(moved permanently), 410 (gone)

• contains a Last-Modified: header field

• one or more hours since the last modification

• any Expires: date/time is still in the future

• does not contain restrictive cache control
‘‘Pragma: no-cache’’ field (HTTP/1.0)
‘‘Cache-Control: no-cache, no-store, private’’ (/1.1)

• any ‘‘Vary:’’ header field does not contain a ‘‘*’’ or ‘‘accept[-...]"’’

• does not exceed a configuration parameter in size

• Proxied negative responses will be cached if . . .

• [ProxyCacheNegativeSeconds] is non-zero

7–8 Proxy Services

• status code 204 (no content), 305 (use proxy), 400 (bad request), 403 (forbidden), 404
(not found), 405 (method not allowed), 414 (request URI too large), 500 (internal
server error), 501 (not implemented), 502 (bad gateway), 503 (service unavailable),
504 (gateway timeout),

• does not contain restrictive cache control
‘‘Pragma: no-cache’’ field (HTTP/1.0)
‘‘Cache-Control: no-cache, no-store, private’’ (/1.1)

The [ProxyCacheFileKbytesMax] configuration parameter controls the maximum size of a
response before it will not be cached. This can be determined from any ‘‘Content-Length:’’
response header field, in which case it will proactively not be cached, or if during cache load
the maximum size of the file increases beyond the specified limit the load is aborted.

Not all sites may benefit from cache!

As many transactions on today’s Web contain query strings, etc., and therefore cannot be
meaningfully cached, it should not be assumed the cost/benefit of having a proxy cache enabled
is a forgone conclusion. Each site should monitor the proxy traffic reports and decide on a
local policy.

The facilities described in Section 7.2.6 allow a reasonably informed decision to be made.
Items to be considered.

• The ratio of cache reads to network accesses.

• The number of non-cacheable requests and responses, particularly as a percentage of total
proxy traffic.

• The ratio of network to cache traffic, although this may be skewed by having a high ratio
of 304 (not-modified) responses from cache (which contain few bytes). Check the cache
304 reporting item.

Last, but by no means least, understanding the characteristics of local usage. For example,
are there a small number of requests generating lots of non-cacheable traffic? For instance,
a few users accessing streaming content.

7.2.1 Cache Device

Selection of a disk device for supporting the proxy cache should not be made without careful
consideration, doubly so if significant traffic is experienced. Here are some common-sense
suggestions.

• avoid locating it as a subdirectory of WASD_ROOT:[000000]

• use a disk with as little other activity as possible (both I/O and space usage)

• use a disk with as much free space as possible

• use the fastest disk available

Proxy Services 7–9

Initially the directory will need to be created. This can be done manually as described below, or
if using the supplied server startup procedures (see ‘‘WASD Web Services - Install and Config’’)
it is checked for and if it does not exist is automatically created during startup. The directory
must be owned by the HTTP$SERVER account and have full read+write+execute+delete
access. It is suggested to name it [WASD_CACHE] and may be created manually using the
following command.

$ CREATE /DIR /OWN=HTTP$SERVER /PROT=(O:RWED,G,W) device:[WASD_CACHE]

It is a relatively simple matter to relocate the cache at any stage. Simply create the required
directory in the new location, modify the startup procedures to reflect this, shut the server
down completely then restart it using the procedures (not a /DO=RESTART!). The contents
of the previous location could be transfered to the new using the BACKUP utility if desired.

WASD_CACHE_ROOT Logical

It is required to define the logical name WASD_CACHE_ROOT if any proxy services are
specified as using cache in the server configuration. The server will not start unless it is
correctly defined. The logical should be a concealed device logical specifying the top level
directory of the cache tree. The following example shows how to define such a logical name.

$ DEFINE /SYSTEM /EXEC /TRANSLATION=CONCEALED WASD_CACHE_ROOT device:[WASD_CACHE.]

If example startup procedure is in use then it is quite straight-forward to have the logical
created during server startup (see ‘‘WASD Web Services - Install and Config’’).

7.2.2 Enabling Caching

Caching may enabled on a per-service basis. This means it is possible to have a caching proxy
service and a non-caching service active on the one server. Caching is enabled by appending
the cache keyword to the particular service specification. The following example shows a
non-proxy and a caching proxy service.

[[http://alpha.example.com:80]]
[ServiceProxy] disabled

[[http://alpha.example.com:8080]]
[ServiceProxy] enabled
[ServiceProxyCache] enabled

Proxy caching may be selectively disabled for a particular site, sites or paths within sites
using the SET nocache mapping rule. This rule, used to disable caching for local requests,
also disables proxy file caching for that subset of requests. This example shows a couple of
variations.

[[alpha.example.com:8080]]
disable caching for local site’s servers that respond fairly quickly
set http://*.local.domain/* nocache
disable caching of log files
set http://*.log nocache
pass http://*

Note
It is also recommended to place the cache directory under some authorization control
to prevent casual browsing and access of the cache contents. Something local, similar

7–10 Proxy Services

in intention to

[[alpha.example.com:8080]]
["WASD Admin"=WASD_ADMIN=id]
/wasd_cache_root/* ~webadmin,131.185.250.*,r+w ;

7.2.3 Cache Management

As the proxy cache is implemented using the local file system, management of the cache
implies controlling the number of, and exactly which files remain in cache. Essentially
then, management means when and which to delete. The [ProxyReportLog] configuration
parameter enables the server process log reporting of cache management activities.

Cache file deletion has three variants.

1. ROUTINE

This ensures files that have not been accessed within specified limits are periodically and
regularly deleted. The [ProxyCacheRoutineHourOfDay] configuration parameter controls
this activity.

The ROUTINE form occurs once per day at the specified hour. The cache files are scanned
looking for those that exceed the configuration parameter for maximum period since last
access, which are then deleted (the largest number of [ProxyCachePurgeList], as described
below).

2. BACKGROUND

Setting the [ProxyCacheRoutineHourOfDay] configuration parameter to 24 enables back-
ground purging.

In this mode the server continuously scans through the cache files in the same manner
as for ROUTINE purging. The difference is it is not all done a single burst once a
day, pushing disk activity to the maximum. The background purge regulates the period
between each file access, pacing the scan so that the entire cache is passed through once
a day. It adjusts this pace according the the size of the cache.

3. REACTIVE

This is a remedial action, when cache device usage is reaching its configuration limit and
files need to be deleted to free up space. The following parameters control this behaviour.

[ProxyCacheDeviceCheckMinutes]
[ProxyCacheDeviceMaxPercent]
[ProxyCacheDevicePurgePercent]
[ProxyCachePurgeList]

The cache device space usage is checked at the specified interval.

If the device reaches the specified percentage used a cache purge is initiated and by
deleting files until the specified reduction is attained, the total space in use on the disk
is reduced.

The cache files are scanned using the [ProxyCachePurgeList] parameter described below,
working from the greatest to least number of hours in the steps provided. At each scan
files not accessed within that period are deleted. At each few files deleted the device free

Proxy Services 7–11

space is checked as having reached the lower purge percentage limit, at which point the
scan terminates.

This parameter has as its input a series of comma-separated integers representing a
series of hours since files were last accessed. In this way the cache can be progressively
reduced until percentage usage targets are realized. Such a parameter would be specified
as follows,

[ProxyCachePurgeList] 168,48,24,8,0

meaning the purge would first delete files not accessed in the last week, then not for
the last two days, then the last twenty-four hours, then eight, then finally all files. The
largest of the specified periods (in this case 168) is also used as the limit for the ROUTINE
scan and file delete.

Once the target reduction percentage is reached the purge stops. During the purge
operation further cache files are not created. Even when cache files cannot be created for
any reason proxy serving still continues transparently to the clients.

Note
Cache files can be manually deleted at any time (from the command line) without
disturbing the proxy-caching server and without rebuilding any databases. When
deleting, the /BEFORE=date/time qualifier can be used, with /CREATED being
the document’s last-modified date, /REVISED being the last time it was loaded,
and /EXPIRED the last time the file was accessed (used to supply a request). Be
aware that on an active server it is quite possible some files may be locked at time
of attempted deletion.

From The Command-Line

If [ProxyCacheRoutineHourOfDay] is empty or non-numeric the automatic, once-a-day routine
purge of the cache by the server is disabled and it is expected to be performed via some other
mechanism, such as a periodic batch job. This allows routine purging more or less frequently
than is provided-for by server configuration, and/or the purge activity being performed by a
process or cluster node other than that of the HTTPd server (reducing server and/or node
impact of this highly I/O intensive activity). Progress and other messages are provided
via SYS$OUTPUT, and if configured in the [Opcom . . .] directives to the operator log and
designated operator terminal as well. If a process already has the cache locked the initiated
activity aborts.

The following example shows a routine purge being performed from the command-line. This
form uses the hours from [ProxyCachePurgeList].

$ HTTPD /PROXY=PURGE=ROUTINE

A variant on this allows the maximum age to be explicitly specified.

$ HTTPD /PROXY=PURGE=ROUTINE=168

Reactive purging and statistic scans may also be initiated from the command line. For a
reactive purge the first number can be the device usage percentage (indicated by the trailing
‘‘%’’), if not the configuration limit is used.

$ HTTPD /PROXY=PURGE=REACTIVE=80%,168,48,24,8,0
$ HTTPD /PROXY=CACHE=STATISTICS

7–12 Proxy Services

Any in-progress scan of the cache (i.e. reactive or routine purges, or a statistics scan) can be
halted from the command line (and online Server Admininistration facility).

$ HTTPD /PROXY=STOP=SCAN

7.2.4 Cache Invalidation

For the purposes of this document, cache invalidation is defined as the determination when
a cache file’s data is no longer valid and needs to be reloaded.

The method used for cache validation is deliberately quite simple in algorithm and imple-
mentation. In this first attempt at a proxy server the overriding criteria have been efficiency,
simplicity of implementation, and reliability. Wishing to avoid complicated revalidation using
behind-the-scenes HEAD requests the basic approach has been to just invalidate the cache
item upon exiry of a period related to the ‘‘Last-Modified:’’ age or upon a no-cache request,
both described further below.

• If a ‘‘Pragma: no-cache’’ request header field is present (as is generated by Netscape
Navigator when using the reload function) then the server should completely reload the
response from the remote server. (Too often the author seems to have received incomplete
responses where the proxy server caches only part of a response and has seemed to refuse
to explicitly re-request.) OK, it’s a bit more expensive but who’s to say the proxy server
is right all the time! The response is still cached ... the next request may not have the
no-cache parameter.

• When a response is cached the file creation date/time is set to the local equivalent of the
‘‘Last-Modified:’’ GMT date and time supplied with the response. In this manner the file’s
absolute age can be determined quickly and easily from the file header. This is used as
described in Section 7.2.5.

• When a file is cached, the revision and expires date/times are set to current. The revision
date/time is used when assessing when the file was last loaded/validated/reloaded. Once a
file is cached the RMS expires date/time is updated every time it is subsequently accessed.
In this way recency of usage of the item can be easily tracked, allowing the routine and
reactive purges to operate by merely checking the file header.

The revision count (automatically updated by VMS) tracks the absolute number of accesses
since the file was created (actually a maximum of 65535, or an unsigned short, but that
should be enough for informational purposes).

7.2.5 Cache Retention

The [ProxyCaheReloadList] configuration parameter is used to control when a file being
accessed is reloaded from source.

This parameter supplies a series of integers representing the hours after which an access to
a cache file causes the file to be invalidated and reloaded from the source during the proxied
request. Each number in the series represents the lower boundary of the range between it
and the next number of hours. A file with a last-loaded age falling within a range is reloaded
at the lower boundary of that particular range. The following example

Proxy Services 7–13

[ProxyCacheReloadList] 1,2,4,8,12,24,48,96,168

would result in a file 1.5 hours old being reloaded every hour, 3.25 hours old every 2 hours, 7
hours old every 4 hours, etc. Here "old" means since last (or of course first) loaded. Files not
reloaded since the final integer, in this example 168 (one week), are always reloaded.

7.2.6 Reporting and Maintenance

The HTTPDMON utility allows real-time monitoring of proxy serving activity (Section 13.9).

Proxy reports and some administrative control may be exercised from the online Server
Administration facility (Chapter 9). The information reported includes:

• some proxy serving statistics

• current cache device status

• whether cache space is available

• if a purge is in progress

• the results from the last routine and reactive purges

• the results from the last scan of the cache

• contents of the host name/address cache

The following actions can be initiated from this menu. Note that three of these relate to proxy
file cache and so may take varying periods to complete, depending on the number of files. If
the cache is particularly large the scan/purge may take some considerable time.

• generate proxy cache statistics by scanning the entire cache

• perform a routine purge

• perform a reactive purge

• purge the proxy host name/address cache

Also available from the Server Administration facility is a dialog allowing the proxy charac-
teristics of the running server to be adjusted on an ad hoc basis. This only affects the ex-
ecuting server, to make changes to permanent configuration the WASD_CONFIG_GLOBAL
configuration file must be changed.

This dialog can be used to modify the device free space percentages according to recent changes
in device usage, alter the reload or purge hour list characteristics, etc. After making these
changes a routine or reactive purge will automatically be initiated to reduce the space in use
by the proxy cache if implied by the new settings.

7.2.7 PCACHE Utility

It is often useful to be able to list the contents of the proxy cache directory or the character-
istics or contents of a particular cache file. Cache files have a specific internal format and
so require a tool capable of dealing with this. The WASD_ROOT:[SRC.UTILS]PCACHE.C
program provides a versatile command-line utility as well as CGI(plus) script, making cache
file information accessible from a browser. It also allows cache files to be selected by wild-
card filtering on the basis of the contents of the associated URL or response header. For

7–14 Proxy Services

detailed information on the various command-line options and CGI query-string options see
the description at the start of the source code file.

Command-Line Use

Make the WASD_EXE:PCACHE.EXE executable a foreign verb. It is then possible to

• list the basic characteristics of all/selected files in the cache directory tree

• list the characteristics plus the HTTP response header of a single file

• extract the response header

• extract the response body (text, graphic, file, etc.)

• do all of the above while filtering on URL or response header contents, number of hits,
when last accessed, last loaded, and last modified (in hours)

Script Use

To make the PCACHE script available to the server ensure the following line exists in the
HTTP$CONFIG configuration file in the [AddType] section.

.HTC application/x-script /cgiplus-bin/pcache WASD proxy cache file

The following rule needs to be in the WASD_CONFIG_MAP configuration file.

pass /wasd_cache_root/*

Note
It is also recommended to place the utility and the cache directory under some
authorization control to prevent casual browsing and access of the cache contents.
Something local, similar in intention to

[[alpha.example.com:8080]]
["WASD Admin"=WASD_ADMIN=id]
/pcache/* ~webadmin,131.185.250.*,r+w ;
/wasd_cache_root/* ~webadmin,131.185.250.*,r+w ;

Once available the following is then possible.

• From a directory listing (‘‘Index Of’’) access a cache file and be presented with the following
information:

• blocks used/allocated

• last modification date/time of the response

• date/time the response was (re)loaded into cache

• date/time the cache file was last accessed

• number of time since first created the cache file has been accessed

• the URL the cache file represents (as a link)

• the full response header (as received from the proxied server)

Proxy Services 7–15

• a series of ‘‘buttons’’ allowing

• the cache content (response body) to be viewed (note that self-relative embedded
graphics, etc., probably will not be displayed in such documents)

• the cache file to be VMS DUMPed

• the cache file to be VMS ANALYZE/RMSed

• the cache file to be VMS DELETEd

If the configuration changes described above have been made the following link will return
such an index.

online hypertext link

• Have the utility generate a form providing a convenient interface to the various capabil-
ities and filters available. If the configuration changes described above have been made
the following link will return this form.

online hypertext link

• The utility’s form does not have to be used. By supplying the appropriate query string
components, either from a custom form or forms, or directly embedded into links, profiles,
listings, deletion may be generated.

Note
Cache directory trees have the potential to become heavily populated, so the use of the
script to generate listings of the cache contents could return extremely large listing
documents.

7.3 CONNECT Serving
The connect service provides firewall proxying for any connection-oriented TCP/IP access.
Essentially it provides the ability to tunnel any other protocol via a Web proxy server. In the
context of Web services it is most commonly used to provide firewall-transparent access for
Secure Sockets Layer (SSL) transactions. It is a special case of the more general tunneling
provided by WASD, see Section 7.6.

7.3.1 Enabling CONNECT Serving

As with proxy serving in general, CONNECT serving may enabled on a per-service basis
using the WASD_CONFIG_GLOBAL [service] directive, the WASD_CONFIG_SERVICE con-
figuration file, or even the /SERVICE= qualifier.

The actual services providing the CONNECT access (i.e. the host and port) are specified on a
per-service basis. This means it is possible to have CONNECT and non-CONNECT services
deployed on the one server, as part of a general proxy service or standalone. CONNECT
proxying is enabled by appending the connect keyword to the particular service specification.
The following example shows a non-proxy and proxy services, with and without additional
connect processing enabled.

7–16 Proxy Services

[[http://alpha.example.com:80]]

[[http://alpha.example.com:8080]]
[ServiceProxy] enabled

[[http://alpha.example.com:8081]]
[ServiceProxyTunnel] connect

[[http://alpha.example.com:8082]]
[ServiceProxy] enabled
[ServiceProxyTunnel] connect

7.3.2 Controlling CONNECT Serving

The connect service poses a significant security dilemma when in use in a firewalled environ-
ment. Once a CONNECT service connection has been accepted and established it essentially
acts as a relay to whatever data is passed through it. Therefore any transaction what-
soever can occur via the connect service, which in many environments may be considered
undesirable.

In the context of the Web and the use of the connect service for proxying SSL transactions
it may be well considered to restrict possible connections to the well-known SSL port, 443.
This may be done using conditional directives, as in the following example:

[[alpha.example.com:8080]]
if (request-method:CONNECT)

pass *:443
pass * "403 CONNECT only allowed to port 443."

endif

All of the comments on the use of general and conditional mapping made in Section 7.1.5 can
also be applied to the connect service.

7.4 FTP Proxy Serving
WASD provides a proxy service for the FTP scheme (prototcol). This provides the facility to
list directories on the remote FTP server, download and upload files.

The (probable) file system of the FTP server host is determined by examining the results of
an FTP PWD command. If it returns a current working directory specification containing a
‘‘/’’ then it assumes it to be Unix(-like), if ‘‘:[’’ then VMS, if a ‘‘\ ’’ then DOS. (Some DOS-based
FTP servers respond with a Unix-like ‘‘/’’ so a second level of file-system determination is
undertaken with the first entry of the actual listing.) Anything else is unknown and reported
as such. WASD (for the obvious reason) is particularly careful to perform well with FTP
servers responding with VMS file specifications.

Note that the content-type of the transfer is determined by the way the proxy server interprets
the FTP request path’s ‘‘file’’ extension. This may or may not correspond with what the remote
system might consider the file type to be. The default content-type for unknown file types is
‘‘application/octet-stream’’ (binary). When using the alt query string parameters then for any
file in a listing the icon provides an alternate content-type. If the file link provides a text
document then the icon will provide a binary file. If the link returns a binary file then the
icon will return a file with a plain-text content-type.

Proxy Services 7–17

In addition to content-type the FTP mode in which the file transfer occurs can be determined
by either of two conditions. It the content-type is ‘‘text/..’’ then the transfer mode will be ASCII
(i.e. record carriage-control adjusted between systems). If not text then the file is transfered
in Image mode (i.e. a binary, opaque octet-stream). For any given content-type this default
behaviour may be adjusted using the [AddType] directive (see ‘‘WASD Web Services - Install
and Config’’) or the ‘‘#!+’’ MIME.TYPES directive (see ‘‘WASD Web Services - Install and
Config’’).

Rules required in WASD_CONFIG_MAP for mapping FTP proxy. This is preferably made
against the virtual service providing the FTP proxy. The service explicitly must make the
icon path used available or it must be available to the proxy service in some other part of the
mappings. Also the general requirement for error message URLs applies to FTP proxying
(Error Messages).

[[proxy.host.name:8080]
pass http://* http://*
pass ftp://* ftp://*
pass /*/-/* /wasd_root/runtime/*/*

7.4.1 FTP Query String Keywords

Keywords added to an FTP request query string allow the basic FTP action to be somewhat
tailored. These case-insensitive keywords can be in the form of a query keys or query form
fields and values. This allows considerable flexibility in how they are supplied, allowing easy
use from a browser URL field or for inclusion as form fields.

FTP Query String Keywords

Keyword Description

alt Adds alternate access (complementary content-type at the icon) for directory
listings.

ascii Force the file transfer type to be done as ASCII (i.e. with carriage-control
conversion between systems with different representations).

content Explicitly specify the content type for the returned file (e.g. ‘‘content:text/plain’’, or
‘‘content=image/gif’’).

dos When generating a directory listing force the interpretation to be DOS.

email Explicitly specify the anonymous access email address (e.g. ‘‘email:daniel@wasd.vsm.com.au’’
or ‘‘email=daniel@wasd.vsm.com.au’’).

image Force the file transfer type to be done as an opaque binary stream of octets.

list Displays the actual directory plain-text listing returned by the remote FTP server.
Can be used for problem analysis.

login Results in the server prompting for a username and password pair that are then
used as the login credentials on the remote FTP server.

7–18 Proxy Services

Keyword Description

octet Force the content-type of the file returned to be specified as "application/octet-
stream".

text Force the content-type of the file returned to be specified as "text/plain".

unix When generating a directory listing force the interpretation to be Unix.

upload Causes the server to return a simple file transfer form allowing the upload of a file
from the local system to the remote FTP server.

vms When generating a directory listing force the interpretation to be VMS.

7.4.2 ‘‘login’’ Keyword

The usual mechanism for supplying the username and password for access to a non-
anonymous proxied FTP server area is to place it as part of the request line (i.e.
‘‘ftp://username:password@the.host.name/path/’’). This has the obvious disadvantage that it’s
there for all and sundry to see.

The ‘‘login’’ query string is provided to work around the more obvious of these issues, having
the authentication credentials as part of the request URL. When this string is placed in the
request query string the FTP proxy requests the browser to prompt for authentication (i.e.
returns a 401 status). When request header authentication data is present it uses this as
the remote FTP server username and password. Hence the remote username and password
never need to appear in plain-text on screen or in server logs.

7.5 Gatewaying Using Proxy
WASD is fully capable of mapping non-proxy into proxy requests, with various limitations on
effectiveness considering the nature of what is being performed.

Gatewaying between request schemes (protocols)

HTTP to HTTP (a gateway of sorts - standard proxy)
HTTP TO HTTP-over-SSL (non-secure to secure)
HTTP to FTP
HTTP-over-SSL to HTTP (secure to non-secure)
HTTP-over-SSL to HTTP-over-SSL (secure to secure)
HTTP-over-SSL to FTP

and also gatewaying between IP versions

IPv4 to IPv6
IPv6 to IPv4

All can be useful for various reasons. One example might be where a script is required to
obtain a resource from a secure server via SSL. The script can either be made SSL-aware,
sometimes a not insignificant undertaking, or it can use standard HTTP to the proxy and
have that access the required server via SSL. Another example might be accessing an internal
HTTP resource from an external browser securely, with SSL being used from the browser to
the proxy server, which the accesses the internal HTTP resource on its behalf.

Proxy Services 7–19

Request Redirect

The basic mechanism allowing this gatewaying is ‘‘internal’’ redirection. The redirect mapping
rule (see ‘‘WASD Web Services - Install and Config’’) either returns the new URL to the
originating client (requiring it to reinitiate the request) or begins reprocessing the request
internally (transparently to the client). It is this latter function that is obviously used for
gatewaying.

7.5.1 Reverse Proxy

The use of WASD proxy serving as a firewall component assumes two configured network
interfaces on the system, one of which is connected to the internal network, the other to the
external network. (Firewalling could also be accomplished using a single network interface
with router blocking external access to all but the server system.) Outgoing (internal to
external) proxying is the most common configuration, however a proxy server can also be
used to provide controlled external access to selected internal resources. This is sometimes
known as reverse proxy and is a specific example of WASD’s general non-proxy to proxy request
redirection capability (Section 7.5).

In this configuration the proxy server is contacted by an external browser with a standard
HTTP request. Proxy server rules map this request onto a proxy-request format result. For
example:

redirect /sales/* /http://sales.server.com/*?

Note that the trailing question-mark is required to propagate any query string (see ‘‘WASD
Web Services - Install and Config’’).

The server recognises the result format and performs a proxy request to a system on the
internal network. Note that the mappings required could become quite complex, but it is
possible. See example 7 in Section 7.1.5.

Redirection Location Field

If a reverse proxied server returns a redirection response (302) containing a ‘‘Location: url’’
field with the host component the same reverse-proxied-to server it can be rewritten to instead
contain the proxy server host. If these do not match the rewrite does not occur. Using the
redirection example above, the SET mapping rule proxy=reverse=location specifies the path
that will be prefixed to the path component in the location field URL. Usually this would be
the same path used to map the reverse proxy redirect (in this example ‘‘/sales/’’), though could
be any string (presumably detected and processed by some other part of the mapping).

set /sales/* proxy=reverse=location=/sales/
redirect /sales/* /http://sales.server.com/*?

This could be simplified a little by using a postfix SET rule along with the original redirect.

redirect /sales/* /http://sales.server.com/*? proxy=reverse=location=/sales/

If the proxy=reverse=location=<string> ends in an asterisk the entire 302 location field URL
is appended (rather than just the path) resulting in something along the lines of

7–20 Proxy Services

Location: http://proxy.server.com/sales/http://sales.server.com/path/

which once redirected by the client can be subsequently tested for and some action made by
the proxy server according to the content (just a bell or whistle ;-).

Authorization Verification

WASD can authorize reverse proxy requests locally (perhaps from the SYSUAF) and rewrite
that username into the proxied requests ‘‘Authorization: . . . ’’ field. The proxied-to server
can then verify that the request originated from the proxy server and extract and use that
username as authenticated.

This functionality is described in the WASD_ROOT:[SRC.HTTPD]PROXYVERIFY.C module.

proxyMUNGE Utility

This utility (CGIplus script) can be used to rewrite HTTP response ‘‘Location:’’ fields, ‘‘Set-
Cookie:’’ path and domain components and URLs in HTML and CSS content.

This functionality is described in the prologue to the code WASD_ROOT:[SRC.UTILS]PROXYMUNGE.C

Note
The proxyMUNGE Utility handles all response rewriting and so when employing it to
perform reverse-proxy processing it is unnecessary to use the proxy=reverse=location=<string>

mapping rule described in Redirection Location Field.

7.5.2 One-Shot Proxy

This looks a little like reverse proxy, providing access to a non-local resource via a standard
(non-proxy) request. The difference allows the client to determine which remote resource is
accessed. This works quite effectively for non-HTML resources (e.g. image, binary files, etc.)
but non-self-referential links in HTML documents will generally be inaccessible to the client.
This can provide provide scripts access to protocols they do not support, as with HTTP to
FTP, HTTP to HTTP-over-SSL, etc.

Mappings appropriate to the protocols to be support must be made against the proxy service.
Of course mapping rules may also be used to control whom or to what is connected.

[[the.proxy.service:port]]
support "one-shot" non-proxy to proxy redirect
redirect /http://* http://*
redirect /https://* https://*
redirect /ftp://* ftp://*
OK to process these (already, or now) proxy format requests
pass http://* http://*
pass https://* https://*
pass ftp://* ftp://*

The client may the provide the desired URL as the path of the request to the proxy service.
Notice that the scheme provided in the desired URL can be any supported by the service and
its mappings.

http://the.proxy.service:port/http://the.remote.host/path
http://the.proxy.service:port/https://the.remote.host/path
http://the.proxy.service:port/ftp://the.remote.host/pub/

Proxy Services 7–21

7.5.3 DNS Wildcard Proxy

This relies on being able to manipulate host record in the DNS or local name resolu-
tion database. If a ‘‘*.the.proxy.host’’ DNS (CNAME) record is resolved it allows any host
name ending in ‘‘.the.proxy.host’’ to be resolved to the corresponding IP address. Simi-
larly (at least the Compaq TCP/IP Services) the local host database allows an alias like
‘‘another.host.name.proxy.host.name’’ for the proxy host name. Both of these would allow a
browser to access ‘‘another.host.name.proxy.host.name’’ with it resolved to the proxy service.
The request ‘‘Host:’’ field would contain ‘‘another.host.name.proxy.host.name’’.

Using this approach a fully functioning proxy may be implemented for the browser without
actually configuring it for proxy access, where returned HTML documents contain links that
are always correct with reference to the host used to request them. This allows the client an
ad hoc proxy for selected requests. For a wildcard (CNAME) record the browser user may
enter any host name prepended to the proxy service host name and port and have the request
proxied to that host name. Entering the following URL into the browser location field

http://the.host.name.the.proxy.service:8080/path

would result in a standard HTTP proxy request for ‘‘/path’’ being made to ‘‘the.host.name:80’’.
With the URL

https://the.host.name.the.proxy.service:8443/path

an SSL proxy request. Note that normally the well-known port would be used to connect to
(80 for http: and 443 for https:). If the final, period-separated component of the wildcard host
name is all digits it is interpreted as a specific port to connect to. The example

http://the.host.name.8001.the.proxy.service:8080/path

would connect to ‘‘the.host.name:8001’’, and

https://the.host.name.8443.the.proxy.service:8443/path

to ‘‘the.host.name:8443’’.

Note
It has been observed that some browsers insist that an all-digit host name element is
a port number despite it being prefixed by a period not a colon. These browsers then
attempt to contact the host/port directly. This obviously precludes using an all-digit
element to indicate a target port number with these browsers.

This wildcard DNS entry approach is a more fully functional analogue to common proxy
behaviour but is slightly less flexible in providing gatewaying between protocols and does
require more care in configuration. It also relies on the contents of the request ‘‘Host:’’ field
to provide mapping information (which generally is not a problem with modern browsers).
The mappings must be performed in two parts, the first to handle the wildcard DNS entry,
the second is the fairly standard rule(s) providing access for proxy processing.

[[the.proxy.service:port1]]
if (host:*.the.proxy.service:port1)

redirect * /http://*
else

pass http://* http://*
endif

7–22 Proxy Services

The obvious difference between this and one-shot proxy is the desired host name is provided
as part of the URL host, not part of the request path. This allows the browser to correctly
resolve HTML links etc. It is less flexible because a different proxy service needs to be
provided for each protocol mapping. Therefore, to allow HTTP to HTTP-over-SSL proxy
gatewaying another service and mapping would be required.

[[the.proxy.service:port2]]
if (host:*.the.proxy.service:port2)

redirect * /https://*
else

pass https://* https://*
endif

7.5.4 Originating SSL

This proxy function allows standard HTTP clients to connect to Secure Sockets Layer
(Chapter 4) services. This is very different to the CONNECT service (Section 7.3), allowing
scripts and standard character-cell browsers supporting only HTTP to access secure services.

Standard username/password authentication is supported (as are all other standard HTTP
request/response interactions). The use of X.509 client certificates (Section 4.5.12) to establish
outgoing identity is not currently supported.

Enabling SSL

Unlike HTTP and FTP proxy it requires the service to be specifically configured using the
[ServiceClientSSL] directive.

There are a number of Secure Sockets Layer related service parameters that should also be
considered (see ‘‘WASD Web Services - Install and Config’’). Although most have workable
defaults unless [ServiceProxyClientSSLverifyCA] and [ServiceProxyClientSSLverifyCAfile]
are specifically set the outgoing connection will be established without any checking of the
remote server’s certificate. This means the host’s secure service could be considered unworthy
of trust as the credentials have not been established.

[[http://alpha.example.com:8080]]
[ServiceProxy] enabled
[ServiceClientSSL] enabled

7.6 Tunneling Using Proxy
WASD supports the CONNECT method which effectively allows tunneling of raw octets
through the proxy server. This facility is most commonly used to allow secure SSL connections
to be established with hosts on the ’other side’ of the proxy server. This basic mechanism
is also used by WASD to provide an extended range of tunneling services. The term raw is
used here to indicate an 8 bit, bidirectional, asynchronous exchange of octets between two
entities, as a protocol family, not necessarily as an application (but can be so). Global proxy
serving must be enabled (Section 7.1.1) and then each service must be configured and mapped
according to the desired mode of tunneling. Disabling or setting timeouts appropriately on the
mapped service is important if connections are not to be disrupted by general server timeouts
on output and non-progress (quiescent connections).

Proxy Services 7–23

7.6.1 [ServiceProxyTunnel] CONNECT

A service with this configuration is used as a target for CONNECT proxying (usually SSL
through a firewall). The client expects an HTTP success (200) response once the remote
connection is established, and HTTP error response if there is a problem, and once established
just relays RAW octets through the proxy server (classic CONNECT behaviour).

WASD_CONFIG_SERVICE
[[http://*:8080]]
[ServiceProxy] enabled
[ServiceProxyTunnel] connect

WASD_CONFIG_MAP
[[*:8080]]
if (request-method:connect)

pass *:443 *:443
pass * "403 CONNECT only allowed to port 443."

endif

This configuration enables CONNECT processing and limits any connect to SSL tunneling
(i.e. port 443 on the remote system).

7.6.2 [ServiceProxyTunnel] RAW

This allows any raw octet client (e.g. telnet) to connect to the port and by mapping be
tunnelled to another host and port to connect to its service (e.g. a telnet service). The usual
HTTP responses associated with CONNECT processing are not provided.

WASD_CONFIG_SERVICE
[[http://*:10023]]
[ServiceProxy] enabled
[ServiceProxyTunnel] raw

WASD_CONFIG_MAP
[[*:10023]]
if (request-method:connect)

pass *:0 raw://another.host:23 timeout=none,none,none
endif
pass "403"

Telnet is used in the example above but the principle equally applies to any protocol that
uses a raw 8 bit, bidirectional, asynchronous exchange of octets. Another example might be
an SMTP service (port 25).

SSL to RAW

Using a tunnel it is possible to put a TLS/SSL (https://) front-end service to an otherwise
plaintext-only service (http://).

7–24 Proxy Services

WASD_CONFIG_SERVICE
[[https://tls-host:443]]
[ServiceNonSSLRedirect] https://tls.host:443
[ServiceProxy] enabled
[ServiceProxyTunnel] raw

WASD_CONFIG_MAP
[[*:443]]
if (request-method:connect)

pass *:0 raw://non-tls.host:80
endif
pass "403"

Chaining RAW

It is possible to have a raw tunnel establish itself through a proxy chain (Section 7.1.4) by
transparently generating an intermediate CONNECT request to the up-stream proxy server.
Note that not all CONNECT proxy will allow connection to just any specified port. For
security reasons it it is quite common to restrict CONNECT to port 443.

WASD_CONFIG_SERVICE
[[http://*:10025]]
[ServiceProxy] enabled
[ServiceProxyTunnel] raw

WASD_CONFIG_MAP
[[*:10025]]
if (request-method:connect)

pass *:0 raw://another.host:25 proxy=chain=proxy.host:8080
endif
pass "403"

Any error in connecting to the chained proxy, making the request, connecting to the destina-
tion, etc. (i.e. any error at all) is not reported. The network connection is just dropped. Use
WATCH to establish the cause if necessary.

7.6.3 [ServiceProxyTunnel] FIREWALL

With this configuration a service expects that the first line of text from the client contains
a host name (or IP address) and optional port (e.g. ‘‘the.host.name’’ or ‘‘the.host.name:23’’).
This allows a variable destination to be mapped. The usual HTTP responses associated with
CONNECT processing are not provided.

WASD_CONFIG_SERVICE
[[http://*:10023]]
[ServiceProxy] enabled
[ServiceProxyTunnel] FIREWALL

WASD_CONFIG_MAP
[[*:10023]]
if (request-method:connect)

pass *:* raw://*:23 timeout=none,none,none
pass * raw://*:23 timeout=none,none,none

endif
pass "403"

Proxy Services 7–25

The pass rules force the supplied domain name (and optional port) to be mapped to the telnet
port (23). Of course the mapping rules could allow the supplied port to be mapped into the
destination if desired.

Chaining FIREWALL

As with [ServiceProxyTunnel] RAW it is possible to chain FIREWALL services to an up-stream
proxy server. See Chaining RAW.

7.6.4 Encrypted Tunnel

Up to this point the tunnels have merely been through the proxy server. It is possible to
establish and maintain ENCRYPTED TUNNELS between WASD servers. SSL is used for
this purpose. This is slightly more complex as both ends of the tunnel need to be configured.

+------------+ +------------+
<-unencrypted->| WASD proxy |<-ENCRYPTED->| WASD proxy |<-unencrypted->

+------------+ +------------+

This arrangement may be used for any stream-oriented, network protocol between two WASD
systems. As it uses standard CONNECT requests (over SSL) it MAY also be possible to be
configured between WASD and non-WASD servers.

The following example is going to maintain an encrypted tunnel between WASD servers
running on systems KLAATU and GORT. It is designed to allow a user on KLAATU to connect
to a specified port using a telnet client, and have a telnet session created on GORT, tunnelled
between the two systems via an SSL encrypted connection.

Source of tunnel:

KLAATU WASD_CONFIG_SERVICE
[[http://*:10023]]
[ServiceProxy] enabled
[ServiceClientSSL] ENABLED
[ServiceProxyTunnel] RAW

KLAATU WASD_CONFIG_MAP
[[*:10023]]
if the client is on the local subnet
if (remote-addr:192.168.0.0/24 && request-method:connect)

pass *:0 https://gort.domain:10443 timeout=none,none,none
endif
pass "403"

Destination of tunnel:

7–26 Proxy Services

GORT WASD_CONFIG_SERVICE
[[https://*:10443]]
[ServiceProxy] enabled
[ServiceProxyTunnel] CONNECT

GORT WASD_CONFIG_MAP
[[*:10443]]
limit the connection to a specific host
if (remote-addr:192.168.0.10 && request-method:connect)

pass *:0 raw://gort.domain:23 timeout=none,none,none
endif
pass "403"

When a client connects to the service provided by port 10023 on system KLAATU the
connection is immediately processed using a pseudo CONNECT request header. The service
on this port is a proxy allowed to initiate SSL connections (client SSL). This service is
mapped to system GORT port 10443, an SSL service that allows the CONNECT method
(tunneling). KLAATU’s proxy initiates an SSL connection with GORT. When established and
the CONNECT request from KLAATU is received, it is mapped via a raw tunnel (8 bit, etc.)
to its own system port 23 (the telnet service). Telnet is in use at both ends while encrypted
by SSL inbetween! Note the use of network addresses and general fail rules used to control
access to this service, as well as the disabling of timers that might otherwise shutdown the
tunnel.

7.6.5 Encrypted Tunnel With Authentication

This arrangement is essentially a variation on example 4. It provides a cryptographic
authentication of the originator (source) of the tunnel.

Source of tunnel:

KLAATU WASD_CONFIG_SERVICE
[[http://*:10023]]
[ServiceProxy] enabled
[ServiceClientSSL] enabled
[ServiceProxyTunnel] RAW
[ServiceClientSSLcert] WASD_ROOT:[LOCAL]HTTPD.PEM

KLAATU WASD_CONFIG_MAP
[[*:10023]]
if the client is on the local subnet
if (remote-addr:192.168.0.0/24 && request-method:connect)

pass *:0 https://gort.domain:10443 timeout=none,none,none
endif
pass "403"

Destination of tunnel:

Proxy Services 7–27

GORT WASD_CONFIG_SERVICE
[[https://*:10443]]
[ServiceProxy] enabled
[ServiceProxyTunnel] CONNECT
[ServiceProxyAuth] PROXY

GORT WASD_CONFIG_MAP
[[*:10443]]
we’ll be relying on X509 authentication
if (request-method:connect)

pass *:0 raw://gort.domain:23 timeout=none,none,none
endif
pass "403"

GORT WASD_CONFIG_AUTH
[[*:10443]]
[X509]
* r+w,param="[VF:OPTIONAL]",~4EAB3CBC735F8C7977EBB41D45737E37

This works by configuring the destination service to insist on proxy authorization. The
authorization realm is X509 which causes the destination to demand a certificate from the
source (Section 4.5.12). The fingerprint of this certificate is checked against the authorization
rule before the connection is a allowed to procede.

7.6.6 Shared SSH Tunnel

The objective of this raw tunnel variant (see Section 7.6.2) is to allow tunneling of Secure
Shell (SSH) via a client site proxy server CONNECT which is usually confined to port 443.
Of course most Web servers are configured to provide SSL HTTP on port 443. Sharing of
HTTP and SSH on the same port is a little problematic and involves some protocol detection.
The following explanation of how it is implemented is so that the reader can understand the
requirement for the ‘‘timeout quirk’’.

On configured services; WASD peeks at the incoming TCP byte stream to see if it’s SSH
protocol. If it is, the socket is associated with a proxy raw tunneling service and proxy
tunneling initiated to a mapped SSH server. However (just to make it interesting) some SSH
clients do not initiate their own exchange until after the SSH server, and so peeking only
works for a subset of clients. Of course this is a Catch-22 of sorts! To provide for these
clients; if an input timeout should occur (an SSH client waiting) WASD sets up the tunnel
anyway and begins the proxy. The proxied SSH server should then initiate the protocol and
the client respond. The directive [ServiceShareSSH] configured to be non-zero both enables
this facility for a service and sets the input timeout period (which perhaps should be shorter
than the default 30 seconds because such clients will wait that long for any SSH server
response).

This approach seems to work well-enough in practice, although users need to be aware that
some clients will pause (for the duration of the timeout period - the ‘‘timeout quirk’’) during
initial connection setup.

WASD_CONFIG_SERVICE
[[https://*:443]
[ServiceShareSSH] 10

7–28 Proxy Services

[[http://*:10022]]
[ServiceProxy] enabled
[ServiceProxyTunnel] raw

WASD_CONFIG_MAP
[[*:443]
if (request-method:ssh)

pass * raw://ssh.server.host:22 \
service=the.proxy.host:10022 \
timeout=none,none,none

endif

[[*:10022]]
pass "403"

This example shows an SSL service, the desired SSH service (which can be local or remote)
and the internal proxy service that will provide the connection.

7.6.7 Complex Private Tunneling

When creating raw tunnels between WASD servers, and possibly in other circumstances, it
is often useful to be able to signal tunnel purpose to the remote end. In this way a single
destination port can support multiple tunneling purposes simply through mapping rules. An
originating end can inject an HTTP request line, or full request, into the established tunnel
connection, which can then be processed by the usual WASD request mapping, and from that
alternate services provided based on the intent signalled by the originating end.

This somewhat complex but instructive example illustrates the potential utility and versatility
of WASD tunneling. It involves an originating WASD server, a destination (service providing)
WASD server, and just to make it interesting an intermediate chained HTTP proxy server
(not WASD). The idea is to provide access to various application services not necessarily
supported by intermediate HTTP proxies and/or gateways. Four services will be supported
by the example; SSH, NNTP IMAP and SMTP.

inside firewall outside

+------------+ +-------------+ +------------+
<-raw->| WASD proxy |<-ENCRYPTED->| other proxy |<-ENCRYPTED->| WASD proxy |<-raw->

+------------+ +-------------+ +------------+

wasd.internal.net proxy.internal.net wasd.external.net
proxy.external.net

SSH---8022--+ : : +----22---SSH
SMTP---8025--|________________________:....:_________________________|----25---SMTP
NNTP---8119--| :....: |---119---NNTP
IMAP---8143--+ : : +---143---IMAP

Internal Services

These are the services assigned on the WASD server on the inside of the proxy/gateway. Note
that there is one per application to be tunneled. For simplicity each service port number has
been selected to parallel the well-known application port number. Note that proxy is enabled
on each (allowing them to initiate outgoing connections) and each has SSL enabled (further
allowing them to initiate encrypted connections).

Proxy Services 7–29

client SSH
[[http://*:8022]]
[ServiceProxy] enabled
[ServiceProxyTunnel] RAW
[ServiceClientSSL] enabled

client SMTP
[[http://*:8025]]
[ServiceProxy] enabled
[ServiceProxyTunnel] RAW
[ServiceClientSSL] enabled

client IMAP
[[http://*:8143]]
[ServiceProxy] enabled
[ServiceProxyTunnel] RAW
[ServiceClientSSL] enabled

client NNTP
[[http://*:8119]]
[ServiceProxy] enabled
[ServiceProxyTunnel] RAW
[ServiceClientSSL] enabled

Each client application (i.e. IMAP, SSH) must be configured to connect to its corresponding
service port (e.g. IMAP to 8143, SMTP to 8025).

Internal Mapping

These mappings are made on the WASD server on the inside of the proxy/gateway. The
rules essentially initiate an outgoing encrypted (SSL) connection to the host wasd.external.net

supporting the external WASD proxy server. Each is also configured not to connect directly
but to request the chained proxy server proxy.internal.net to establish the connection on their
behalf.

!##### SSH #####
[[*:8022]]
pass * https://wasd.external.net:443 notimeout \
proxy=tunnel=request="CONNECT wasd-ssh" \
proxy=chain=proxy.internal.net:8080

!##### SMTP #####
[[*:8025]]
pass * https://wasd.external.net:443 \
proxy=tunnel=request="CONNECT external-smtp" \
proxy=chain=proxy.internal.net:8080

!##### NNTP #####
[[*:8119]]
pass * https://wasd.external.net:443 \
proxy=tunnel=request="CONNECT external-nntp" \
proxy=chain=proxy.internal.net:8080

!##### IMAP #####
[[*:8143]]
pass * https://wasd.external.net:443 \
proxy=tunnel=request="CONNECT external-imap" \
proxy=chain=proxy.internal.net:8080

7–30 Proxy Services

If the up-stream proxy server successfully connects to wasd.external.net port 443 the proxy
server allows the byte-stream to be asynchonously and bidirectionally exchanged with the
internal WASD server outgoing connection. This internal WASD server has initiated an SSL
connection and the external server port 443 expects SSL so they can now both negotiate an
SSL-encrypted channel essentially directly with each other.

External Services

The external WASD service configuration is very simple, a single SSL port.

general SSL service
[[https://wasd.external.net:443]]

outgoing proxy/tunnel service
[[http://wasd.external.net:1234]]
[ServiceProxy] enabled
[ServiceProxyTunnel] raw
[ServiceClientSSL] ENABLED

Connections to the 443 port are expected to undertake an SSL negotiation to establish an
encrypted channel. This includes incoming tunnel connections. The service on port 1234 is
required to support the connections outgoing from the external WASD server to the application
server ports.

External Mapping

These mappings are all applied to requests at port 443 on the external WASD server
wasd.external.net. Each rule checks three request characterstics. First, the request
method, ‘‘CONNECT’’. Second, the request URI, varies according to the request. These
are the request data injected by the internal WASD server wasd.internal.net using the
set=proxy=tunnel=request= mapping rule on the outgoing connection. Third, the originat-
ing host (proxy.external.net) address adds an extra filter on from where this facility may be
used. The respective pass of the matching rule then initiates an outgoing connection to the
respective application server’s well-known port. A timeout is applied to limit connection
times.

!# SSH tunneling
[[*:443]]
if (request-method:CONNECT && \
request-uri:"wasd-ssh" && \
remote-addr:205.3.*) \
pass * raw://wasd.external.net:22 service=*:1234 timeout=noprogress=00:00:50

!# SMTP tunneling
[[*:443]]
if (request-method:CONNECT && \
request-uri:"external-smtp" && \
remote-addr:205.3.*) \
pass * raw://smtp.isp.net:25 service=*:1234 timeout=noprogress=00:00:50

!# NNTP tunneling
[[*:443]]
if (request-method:CONNECT && \
request-uri:"external-nntp" && \
remote-addr:205.3.*) \
pass * raw://news.isp.net:119 service=*:1234 timeout=noprogress=00:00:*

Proxy Services 7–31

!# IMAP tunneling
[[*:443]]
if (request-method:CONNECT && \
request-uri:"external-imap" && \
remote-addr:205.3.*) \
pass * raw://imap.isp.net:143 service=*:1234 timeout=noprogress=00:00:50

!# disable general 1234 service usage
[[*:1234]]
pass * 403 "Internal use only!"

Example In Action

Now let’s look at an actual example usage. Consider the internal user’s IMAP application,
say Thunderbird, is configured to use an IMAP server at host wasd.internal.net port 8143.
The internal user activates Thunderbird which then intiates an TCP/IP connection to the
configured IMAP server expecting to commence the IMAP application protocol.

This connection arrives at wasd.internal.net port 8143 which has a WASD raw tunnel service
listening. The connection is accepted and request processing commences. Mapping rules
applied to port 8143 initiate an SSL connection to host wasd.external.net which is not directly
accessable because of the firewall and must be connected to using the HTTP proxy server
proxy.internal.net as an intermediary. This is specified in the same mapping rule. The
mapping rule also injects an HTTP request header providing request characteristics that
can be identified and acted upon by the external server.

The internal WASD server initiates a connection to the proxy server proxy.internal.net act-
ing as part of the firewall. As it is endeavouring to initiate an SSL connection with the
external wasd.external.net host this proxy connection uses a CONNECT request specify-
ing wasd.external.net port 443. The proxy server establishes a connection with the host
wasd.external.net at port 443. Once the connection is established it becomes an asynchronous,
bidirectional channel between wasd.internal.net and wasd.external.net with the proxy server
as a conduit.

The service connection just established is expecting an SSL negotiation in an attempt to es-
tablish an encrypted channel. When this negotiation concludes successfully the communica-
tions between wasd.internal.net and wasd.external.net become opaque to all external listeners
including proxy.internal.net.

The encrypted connection now established, the request begins to be processed by the WASD
server at wasd.external.net. A number of mapping rules apply to port 443. Each rule compares
the injected request method and URI until, in this case, the external-imap rule matches. This
rule specifies that a raw connection be established with the host imap.isp.net at port 143 using
the proxy-capable port 1234 service. A timeout limits the duration this connection can be held
unused.

The IMAP application server at imap.isp.external port 143 accepts the connection at begins
to communicate using the IMAP protocol.

There is now a raw (8 bit, asynchronous, bidirectional) connection from the Thunderbird
client to wasd.internal.net, (encrypted) through to proxy.internal.net, (encrypted) through to
wasd.external.net, and raw to the IMAP server at imap.isp.net. This raw connection will
be used for communication between Thunderbird and the IMAP server using the IMAP
application protocol.

7–32 Proxy Services

7.6.8 Tunnelling Source

When a tunnel is established into a system the source of that connection (IP host-
name/address and port) becomes obscured. By setting the path to the destination port
proxy=forwarded=for (host name) or proxy=forwarded=address (IP address) the external client
can be obtained using data contained in the logical name WASD_TUNNEL.

Consider tunneling external port 22345 to internal port 22 - Secure Shell.

WASD_CONFIG_SERVICE
[[http://*:22345]]
[ServiceProxy] enabled
[ServiceProxyTunnel] RAW

WASD_CONFIG_MAP
[[*:22345]]
pass * raw://localhost:22 notimeout

To Secure Shell the source host and port would be localhost and some random port. It can
be useful for the login procedure or other service to have the actual client host name (or IP
address). Adding the path setting.

WASD_CONFIG_MAP
[[*:22345]]
pass * raw://localhost:22 notimeout proxy=forwarded=address

will result in connection data becoming available in the multivalued logical name WASD_
TUNNEL. Index 0 contains internal data, and then the rest (1..127) contain one tunneled
connection’s details each, in the format

<internal-host:port>=<external-host:port>=<client-host:port>

For example

localhost:46851=www.external.net:22345=mydotcom.org:49201

Obtaining the SSH source port, say from TT_ACCPORNAM data, the original client host and
port can be searched for with some trivial DCL code. Adapt to suit local requirements.

Proxy Services 7–33

$ if P1 .eqs. "" then P1 = f$element(1,":",f$getdvi("TT:","TT_ACCPORNAM"))
$ value = ""
$ local = ""
$ service = ""
$ client = ""
$ index = 1
$ index_loop:
$ value = f$trnlnm("WASD_TUNNEL","WASD_TABLE",index)
$ if value .eqs. "" then goto end_index_loop
$ local = f$element(0,"=",value)
$ addr = f$element(0,":",local)
$ port = f$element(1,":",local)
$ if port .eqs. P1
$ then
$ service = f$element(1,"=",value)
$ client = f$element(2,"=",value)
$ goto end_index_loop
$ endif
$ index = index + 1
$ goto index_loop
$ end_index_loop:
$ if f$trnlnm("TT_CLIENT","LNM$PROCESS") .nes. "" -

then deassign /process TT_CLIENT
$ if client .nes. "" then define /process TT_CLIENT "’’client’"

The tunnel data remains current for at least one minute and may become unavailable at any
time after that.

Note
The source data only reflects the client that connects to that system’s services and so
cannot be used across multiple, back-to-back tunnels.

7.7 Browser Proxy Configuration
The browser needs to be configured to access URLs via the proxy server. This is done using
two basic approaches, manual and automatic.

7.7.1 Manual

Most browsers allow the configuration for access via a proxy server. This commonly consists
of an entry for each of the common Web protocol schemes (‘‘http:’’, ‘‘ftp:’’, ‘‘gopher:’’, etc.).
Supply the configured WASD proxy service host name and port for the HTTP scheme. This
is currently the only one available. This would be similar to the following example:

http: www.example.com 8080

To exclude local hosts, and other servers that do not require proxy access, there is usually a
field that allows a list of hosts and/or domain names for which the browser should not use
proxy access. This might be something like:

www.example.com,example.com,example.com

7–34 Proxy Services

7.7.2 Automatic

At least Netscape Navigator/Communicator and Microsoft Internet Explorer (4.n and follow-
ing) provide the facility to download a small JavaScript function for establishing proxy policy.
Information on this function and its deployment may be found at

http://home.netscape.com/eng/mozilla/2.0/relnotes/demo/proxy-live.html

The following is a very simple proxy configuration JavaScript function. This specifies that all
URL host names that aren’t full qualified, or that are in the ‘‘example.com’’ domain will be
connected to directly, with all other being accessed via the specified proxy server.

function FindProxyForURL(url,host)
{

if (isPlainHostName(host) ||
dnsDomainIs(host, ".example.com"))
return "DIRECT";

else
return "PROXY www.example.com:8080; DIRECT";

}

This JavaScript is contained in a file with a specific, associated MIME file type, ‘‘application/x-
ns-proxy-autoconfig’’. For WASD it is recommended the file be placed in WASD_
ROOT:[LOCAL] and have a file extension of .PAC (which follows Netscape naming conven-
tion).

The following WASD_CONFIG_GLOBAL directive would map the file extension to the
required MIME type:

[AddType]
.PAC application/x-ns-proxy-autoconfig - proxy autoconfig

This file is commonly made the default document available from the proxy service. The
following example shows the HTTP$MAP rules required to do this:

[www.example.com:8080]
pass http://* http://*
pass / /wasd_root/local/proxy.pac
pass *

All that remains is to provide the browser with the location from which load this automatic

proxy configuration file. In the case of the above set-up this would be:

http://www.example.com:8080/

A template for a proxy auto-configuration file may be found at WASD_ROOT:[EXAMPLE]PROXY_
AUTOCONFIG.TXT.

Proxy Services 7–35

Chapter 8

Instances and Environments

WASD instances and environments are two distinct mechanisms for supporting multiple
WASD server processes on a single system.

Server instances are multiple, cooperating server processes providing the same set of config-
ured resources.

Server environments are multiple, independent server processes providing differently config-
ured resources.

8.1 Server Instances
The term instance is used by WASD to describe an autonomous server process. WASD will
support multiple server processes running on a single system, alone or in combination with
multiple server processes running across a cluster. This is notthe same as supporting multiple
virtual servers (see ‘‘WASD Web Services - Install and Config’’) When multiple instances are
configured on a single system they cooperate to distribute the request load between themselves
and share certain essential resources such as accounting and authorization information.

WARNING
Versions earlier than Compaq TCP/IP Services v5.3 and some TCPware v5.n (at
least) have a problem with socket listen queuing that can cause services to ‘‘hang’’
(should this happen just disable instances and restart the server). Ensure you
have the requisite version/ECO/patch installed before activating multiple instances
on production systems!

8.1.1 VMS Clustering Comparison

The approach WASD has used in providing multiple instance serving may be compared in
many ways to VMS clustering.

A cluster is often described as a loosely-coupled, distributed operating environment where
autonomous processors can join, process and leave (even fail) independently, participating
in a single management domain and communicating with one another for the purposes of
resource sharing and high availability.

Instances and Environments 8–1

Similarly WASD instances run in autonomous, detached processes (across one or more
systems in a cluster) using a common configuration and management interface, aware of
the presence and activity of other instances (via the Distributed Lock Manager and shared
memory), sharing processing load and providing rolling restart and automatic ‘‘fail-through’’
as required.

Load Sharing

On a multi-CPU system there are performance advantages to having processing available
for scheduling on each. WASD employs AST (I/O) based processing and was not originally
designed to support VMS kernel threading. Benchmarking has shown this to be quite fast
and efficient even when compared to a kernel-threaded server (OSU) across 2 CPUs. The
advantage of multiple CPUs for a single multi-threaded server also diminishes where a site
frequently activates scripts for processing. These of course (potentially) require a CPU each
for processing. Where a system has many CPUs (and to a lesser extent with only two and
few script activations) WASD’s single-process, AST-driven design would scale more poorly.
Running multiple WASD instances addresses this.

Of course load sharing is not the only advantage to multiple instances . . .

Restart

When multiple WASD instances are executing on a node and a restart is initiated only one
process shuts down at a time. Others remain available for requests until the one restarting
is again fully ready to process them itself, at which point the next commences restart. This
has been termed a rolling restart. Such behaviour allows server reconfiguration on a busy
site without even a small loss of availability.

Fail-Through

When multiple instances are executing on a node and one of these exits for some reason
(resource exhaustion, bugcheck, etc.) the other(s) will continue to process requests. Of course
requests in-progress by the particular instance at the time of instance failure are disconnected
(this contrasts with the rolling restart behaviour described above). If the former process has
actually exited (in contrast to just the image) a new server process will automatically be
created after a few seconds.

The term fail-through is used rather than failover because one server does not commence
processing as another ceases. All servers are constantly active with those remaining
immediately and automatically taking all requests in the absence any one (or more) of them.

8.1.2 Considerations

Of course ‘‘there is no such thing as a free lunch’’ and supporting multiple instances is no
exception to this rule. To coordinate activity between and access to shared resources, multiple
instances use low-level mutexes and the VMS Distributed Lock Manager (DLM). This does add
some system overhead and a little latency to request processing, however as the benchmarks
indicate increases in overall request throughput on a multi-CPU system easily offset these
costs. On single CPU systems the advantages of rolling restart and fail-through need to be

8–2 Instances and Environments

assessed against the small cost on a per-site basis. It is to be expected many low activity
sites will not require multiple instances to be active at all.

When managing multiple instances on a single node it is important to consider each process
will receive a request in round-robin distribution and that this needs to be considered when
debugging scripts, using the Server Administration page and the likes of WATCH, etc. (see
Section 10.1).

8.1.3 Configuration

If not explicitly configured only one instance is created. The configuration directive [Instance-
Max] allows multiple instances to be specified (see ‘‘WASD Web Services - Install and Config’’
) When this is set to an integer that many instances are created and maintained. If set to
‘‘CPU’’ then one instance per system CPU is created. If set to ‘‘CPU-integer’’ then one instance
for all but one CPU is created, etc. The current limit on instances is eight, although this is
somewhat arbitrary. As with all requests, Server Administration page access is automatically
shared between instances. There are occasions when consistent access to a single instance
is desirable. This is provided via an admin service (see ‘‘WASD Web Services - Install and
Config’’)

When executing, the server process name appends the instance number to the ‘‘WASD’’.
Associated scripting processes are named accordingly. This example shows such a system:

Pid Process Name State Pri I/O CPU Page flts Pages
21600801 SWAPPER HIB 16 0 0 00:06:53.65 0 0
21600807 CLUSTER_SERVER HIB 12 1879 0 00:01:14.51 91 112
21600808 CONFIGURE HIB 10 30 0 00:00:01.46 47 23
. . .
21600816 ACME_SERVER HIB 10 71525 0 00:01:28.08 508 713 M
21600818 SMISERVER HIB 9 11197 0 00:00:02.29 158 231
21600819 TP_SERVER HIB 9 1337711 0 00:05:55.78 80 105
. . .
216421F1 WASD1:80 HIB 5 5365731 0 00:23:12.86 37182 7912
2164523F WASD2:80 HIB 5 5347938 0 00:23:31.41 38983 7831
2162BA5D WASD_WOTSUP HIB 3 2111 0 00:00:00.47 735 518
2164ABCF WASD1:80-651 LEF 6 57884 0 00:00:16.71 3562 3417
2164CBDB WASD2:80-612 LEF 4 19249 0 00:00:04.16 3153 3116
21631BDC WASD2:80-613 LEF 5 18663 0 00:00:07.19 3745 3636
2164BBE6 WASD1:80-658 LEF 5 3009 0 00:00:00.94 2359 2263
. . .

8.1.4 Status

The instance management infrastructure distributes basic status data to all instances on
the node and/or cluster. The intent is to provide an easily comprehended snapshot of multi-
instance/multi-node WASD processing status. The data comprises:

• instance name (e.g. "KLAATU::WASD:443")

• date/time the instance status was last updated
+ how long ago this was (seconds, minutes, hours, or days)

• date/time the instance last started
+ how long ago this was (seconds, minutes, hours, or days)

• number of times the instance has started up

Instances and Environments 8–3

• date/time the instance last exited
+ how long ago this was (seconds, minutes, hours, or days)

• the VMS status at the last exit

• instance WASD version (e.g. "11.2.0")

• number of requests processed during the preceding minute

• number of requests processed during the preceding sixty minutes

The data are constrained to these items due to the need to accomodate it within a 64 byte
lock value block for cluster purposes. Single node environments do not utilise the DLM, each
instance updating its table entry directly.

Each node has a table with an entry for every other instance in that WASD environment.
Instance data are updated once every minute so any instance with data older than one minute
is no longer behaving correctly. This could be due to some internal error, or that the instance
no longer exists (e.g. been stopped, exited or otherwise no longer executing). An entry for
an instance that no longer exists is retained indefinitely, or until a /DO=STATUS=PURGE is
performed removing all such expired entries, or a /DO=STATUS=RESET removing all entries
(and allowing those currently executing to repopulate the instance data over the next minute.

These status data are accessible via command-line and in-browser reports, intended for larger
WASD installations, primarily those operating across multiple nodes in a cluster. With the
data being stored in a common, another of those other nodes can provide a per-cluster history
even if one or more nodes become completely non-operational.

This is an example report on a 132 column terminal display. Due to screen width constraints
the date/time omits the year field of the date.

$ httpd/do=status
Instance Ago Up Ago Count Exit Ago Status Version /Min
~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~~~~~~ ~~~~ ~~~~~ ~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~~~~ ~~~~~~~

1 KLAATU::WASD:80 41s 18-DEC 23:27:57 54m 21 18-DEC 23:27:57 54m %X00000001 11.2.0
KLAATU::WASD1:80---1d-17-DEC-02:49:21---1d-----5-17-DEC-02:50:03---1d-%X00000001-11.2.0----3-----15
KLAATU::WASD2:80---1d-17-DEC-02:49:25---1d-----5-17-DEC-02:50:07---1d-%X00000001-11.2.0----0-----10
KLAATU::WASD3:80---1d-17-DEC-02:49:29---1d-----6-17-DEC-02:50:11---1d-%X00000001-11.2.0----0------3
as at 19-DEC-2017 00:22:41

This provides an example CLI report showing a single node, where a single instance has been
started, changed to a three instance configuration, restarted so that the three instances have
begun processing. The configuration has been returned a single instance and then the existing
three instances restarted the previous day, resulting in the original single instance returning
to processing. That instance was last (re)started some 54 minutes ago (a normal exit status
showing) and its status was last updated some 41 seconds ago. Note that the three instances
showing white-space struck-through with hyphens are stale, having last been updated 1 day
ago. Entries older than three minutes are displayed in this format to differentiate them from
current entries.

The same report on an 80 column terminal. Note that the overt date/time has been omitted,
leaving only the period ago the event happened.

8–4 Instances and Environments



$ httpd/do=status
Instance Ago Up Count Exit Status Version /Min /Hour
~~~~~~~~~~~~~~~~ ~~~~ ~~~~ ~~~~~ ~~~~ ~~~~~~~~~~ ~~~~~~~ ~~~~ ~~~~~

1 KLAATU::WASD:80 5s 58m 21 58m %X00000001 11.2.0 1 18
KLAATU::WASD1:80---1d---1d-----5---1d-%X00000001-11.2.0----3-----15
KLAATU::WASD2:80---1d---1d-----5---1d-%X00000001-11.2.0----0-----10
KLAATU::WASD3:80---1d---1d-----6---1d-%X00000001-11.2.0----0------3
as at 19-DEC-2017 00:25:05

Where multiple instances exist, or have existed, and the terminal page size is greater than 24
lines, HTTPMON displays an equivalent of the 80 column report at the bottom of the display.

Similarly, the Server Admin report (Chapter 9) shows an HTML equivalent of the 80 column
report immediately below the control and time panels.

Using Instance Status

• The strike-through (hyphens) of an instance line immediately indicates the instance is no
longer updating (after 3 minutes).

Clear stale entries using $ HTTPD/DO=STATUS=PURGE.

• The instance name Ago shows how long ago it was last updated.

• If the exit Ago is more recent than the startup Ago the instance has exited but not
restarted. The exit Status can show a non-normal status (i.e. not %X00000001).

• An excessive startup Count suggests something amiss.

• Per-minute and/or per-hour request counts that seem atypically low while instance status
seems otherwise normal suggests a networking issue, perhaps up-stream.

8.2 Server Environments
WASD server environments allow multiple, distinctly configured environments to execute on
a single system. Generally, WASD’s unlimited virtual servers and multiple account scripting
eliminates the need for multiple execution environments to kludge these requirements.
However there may be circumstances that make this desirable; regression and forward-
compatibility testing comes to mind.

First some general comments on the design of WASD.

• WASD creates and populates it’s own logical name table (see ‘‘WASD Web Services - Install
and Config’’).

It also adds the WASD_FILE_DEV[n] and WASD_ROOT[n] logical names to the SYSTEM
logical name table.

• WASD creates and uses rights identifiers.

Installation creates and associates specific rights identifiers with separate accounts for
server and script execution. Some specifically named identifiers have functional meaning
to the server. Server startup can create and associate rights identifers used to manage
the server run-time environment.

• WASD makes extensive use of the DLM to coordinate WASD activities system- and cluster-
wide.

Instances and Environments 8–5

All executing server images are aware of all other executing server images on the same
system and within the same cluster. This performs all manner of coordination (e.g.
instance recovery, instantiated services) and data exchange (e.g. $HTTPD/DO=MAP/ALL)
activities.

• WASD uses global sections to accumulate data and for communication between WASD
instances.

Some of these are by default permanent and remain on a system unless explicitly removed.

• WASD uses detached scripting processes.

As it’s possible to $STOP a server process (and thereby prevent it’s run-down handlers
from cleaning up those detached processes). It therefore needs to be able to recognise as
its ’own’ and clean any such ’orphaned’ processes up next time it starts. It does this by
having a rights identifier associated with the server process name (e.g. WASD:80 grants
its scripting processes WASD_PRC_WASD_80, a second instance WASD2:80, WASD_PRC_
WASD2_80, etc.)

All of these mechanisms support multiple, independent environments on a single system. Due
to design and implementation considerations there are fifteen such environments available
per system. The primary (default) is one. Environments two to fifteen are available for site
usage. (Demonstration mode, /DEMO uses environment zero.) Server instances (Section 8.1)
share a single environment.

There are two approaches to provisioning such multiple, independent environments.

8.2.1 Ad Hoc Server Wrapper

This is a DCL procedure that allows virtually any WASD release HTTP server to be executed
in a detached process, either by itself or concurrently with a full release or other ad hoc
detached server. The server image and associated configuration files used by this process can
be specified within the procedure allowing completely independent versions and environments
to be fully supported.

Full usage instructions may be found in the example procedure(s) in WASD_ROOT:[EXAMPLE]*ADHOC*.COM

Two versions are provided, one for pre-v10 and one for post-v10 (due to changes in logical
naming schema).

8.2.2 Formal Environments

Although the basic infrastructure for supporting multiple environments (i.e. the 0..15
environment number) has been in place since version 8, formal support in server CLI
qualifiers and DCL procedures has only been available since version 10. To support version
9 or earlier environments the Section 8.2.1 must be used.

WASD version 10 startup and other run-time procedures have been modified to support
running multiple WASD environments simply from independent WASD file-system trees.
The standard STARTUP.COM procedure accepts the WASD_ENV parameter to specify which
environment (1..15) the server should execute within (primary/default is 1). The procedure
then derives the WASD_ROOT logical name from the location of the startup procedure.

8–6 Instances and Environments

For example:

$! start current release
$ WASD_STARTUP = "/SYSUAF=(ID,SSL)/PERSONA"
$ @DKA0:[WASD_ROOT.STARTUP]STARTUP.COM
$! start previous release in environment 2
$ WASD_ENV = 2
$ @DKA0:[WASD_ROOT_MINUS1.STARTUP]STARTUP.COM

8.2.3 Considerations

WASD environments each fully support all WASD features and facilities (including multiple
server instances) with the exception of DECnet scripting where because of DECnet objects’
global (per-system) definition only the one must be shared between environments.

Per-environment configuration must be done in its own WASD_ROOT part of the file-system
and logical names must be defined in the environment’s associated logical name table. The
site administrator must keep track of which environment requires to be accessed from the
command-line and set the process logical name search list using the appropriate

$ @WASD_FILE_DEV[n]

where n can be a non-primary environment number (see ‘‘WASD Web Services - Install and
Config’’).

It is not possible to have multiple environments bind their services to the same IP address
and port (for fundamental networking reasons). Unless the network interface is specifically
multi-homed for the purpose, services provided by separate environments must be configured
to use unique IP ports.

Non-primary environments (2 . . . 15) prefix the environment as a (hex) digit before the
‘‘WASD’’ in the process name. The above example when executing, each with a single scripting
process, would appear in the system as (second environment providing a service on port 2280):

Pid Process Name State Pri I/O CPU Page flts Pages
00000101 SWAPPER HIB 16 0 0 00:00:11.98 0 0
. . .
00000111 ACME_SERVER HIB 10 6247 0 00:00:12.63 540 611 M
00000112 QUEUE_MANAGER HIB 10 328 0 00:00:00.18 136 175
00000122 TCPIP$INETACP HIB 10 1249419 0 00:07:33.95 401 326
00000123 TCPIP$ROUTED LEF 6 3495839 0 00:01:15.49 166 165 S
. . .
00000468 WASD:80 HIB 6 132924 0 00:01:29.26 17868 2856
0000046D 2WASD:2280 HIB 6 129344 0 00:01:29.26 17712 2840
0000049D WASD:80-8 LEF 4 4449 0 00:00:00.67 934 194
00000503 2WASD:2280-2 LEF 4 565 0 00:00:00.28 732 102
. . .

Cleaning Up

As described earlier each environment creates and maintains logical name table(s) and
system-level name(s), detached scripting processes, lock resources and permananent global
sections. Lock resources disappear with the server processes. Logical names, global sections,
rights identifiers and occasionally detached scripting processes may require some cleaning up
when a non-primary environment’s use is concluded.

Instances and Environments 8–7

Chapter 9

Server Administration

The online Server Administration facility provides a rich collection of functionality, including
server control, reports and configuration. Some of these are intended as general administra-
tion tools while other provide more detailed information intended for server debugging and
development purposes.

online graphic

The value of the WATCH facility Chapter 10 as a general configuration and problem-solving
tool cannot be overstated.

All server configuration files, with the exception of the authentication databases, are plain
text and may be modified with any prefered editor. However the majority of these can
also be administered online through a browser. In addition the update facility allows some
administration of file system portions of the Web. See Chapter 12.

Access to many portions of the package is constrained by file protections and directory listing
access files. See Section 3.10.9 for a method for circumventing these restrictions.

9.1 Access Before Configuration
It is often a significant advantage for the inexperienced administrator on a new and largely
unconfigured installation to be able to gain access to the facilities offered by Server Adminis-
tration, particularly the WATCH facility (Chapter 10). This can be done quite simply by using
the authentication skeleton-key (Section 3.12). This allows the site administrator to register
a username and password from the command-line that can be used to gain access to the
server. In addition, the server ensures that requesting an otherwise non-authorized Server
Administration facility generates a challenge which invokes a username/password dialog at
the browser allowing the user to enter the previously registered username and password and
gain access.

Server Administration 9–1

Method

• Register the skeleton-key username and password.

$ HTTPD == "$WASD_EXE:HTTPD_SSL.EXE"
$! HTTPD == "$WASD_EXE:HTTPD.EXE"
$ HTTPD /DO=AUTH=SKELKEY=_username:password

Note that the username must begin with an underscore, be at least 6 characters, is
delimited by a colon, and that the password must be at least 8 characters. By default
this username and password remains valid for 60 minutes. Choose strings that are
less-than-obvious!

• Access the server via a browser and use the server Server Administration facility.

http://the.host.name:port/httpd/-/admin/

• After use the skeleton-key may be explicitly cancelled if desired.

$ HTTPD /DO=AUTH=SKELKEY=0

9.2 Access Configuration
Once established the site should make the Server Administration facility a configured facility
of the site. The value of its facilities cannot be overstated.

It is also recommended that for production sites the path to these reports be controlled via
authentication and authorization, using both host and username restrictions, similar to the
following:

[WHATEVER-REALM]
/httpd/-/admin/* host.ip.addr,~WebMaster,~WhoEverElse,r+w

If a full authorization environment is not required but administration via browser is still
desired restrict access to browsers executing on the server system itself, using an appropriate
SYSUAF-authenticated username. Provision of a VMS account for server administration only
is quite feasable, see Section 3.10.6.

[VMS]
/httpd/-/admin/* #localhost,~username,r+w

If SSL is in use (Chapter 4) then username/password privacy is inherently secured via
the encrypted communications. To restrict server administration functions to this secure
environment add the following to the WASD_CONFIG_MAP configuration file:

/httpd/-/admin/* "403 Access denied." ![sc:https]

When using the revise capability of the Server Administration facility it is necessary to comply
with all the requirements for Web update of files. This is discussed in general terms in
Chapter 12. Revision of server configuration files requires path permissions allowing write
access for the username(s) doing the administration, as well as the required ACL on the
target directory (in the following example WASD_ROOT:[LOCAL]).

[VMS]
/httpd/-/admin/* #localhost,~username,r+w
/wasd_root/local/* #localhost,~username,r+w

9–2 Server Administration

It is possible to allow general access to the Server Administration facility and reports while
restricting the ability to initiate server actions such as a restart! Using the WORLD realm
against the path is necessary, for the obvious security reason, the server administration
module will not allow itself to be used without an authenticated username, provided as a
pseudo-authenticated ‘‘WORLD’’.

[VMS]
/httpd/-/admin/control/* #localhost,~username,r+w
[WORLD]
/httpd/-/admin/* r

When GZIP compression is configured for the server (see ‘‘WASD Web Services - Install and
Config’’ document, ‘‘GZIP Encoding’’ section) it is not by default applied to Server Admin
reports or other pages. It can be applied, selectively if desired, using mapping rules. For
instance, to apply it to all requests not from the local intranet a rule similar to the following
can be added before the Server Admin path mapping itself.

if (!remote-addr:192.168.0.0/8) set /httpd/-/admin/* response=GZIP=all
pass /httpd/-/admin/* /httpd/-/admin/*

GZIP content-encoding can never be applied to WATCH reports.

9.3 Server Instances
With a single instance (see Section 8.1) access to Server Administration reports, etc. is always
serviced by the one server process. If multiple instances are configured then in common with
all requests administration requests will be serviced by any one of the associated processes
depending on the momentary state of the round-robin distribution.

There are many circumstances where it is preferable to access only the one server. This can
be accomplished for two differing objectives.

1. To facilitate access to a specific instance’s Server Administration page, including instance-
specific reports etc. This is provided through the use of an administration service port
(see ‘‘WASD Web Services - Install and Config’’) available from the Server Administration
page.

2. The Server Administration page (Control Section) and the command-line (Section 9.7.10)
provides the capability to explicitly set the number of instances supported, overriding
any configuration directive. After explicitly setting this, using either means, the server
must be restarted. The explicit startup setting remains in effect until it is changed to
‘‘max’’ allowing the WASD_CONFIG_GLOBAL configuration directive [InstanceMax] to
once again determine the number of instances required.

The latter approach is particularly useful when performing detailed WATCH activities
(Chapter 10).

When multiple per-node instances are executing the Server Administration pages and reports
all include an indication of which process serviced the request. When accessing no instance
in particular the process name is presented in parentheses after the page title

Server Administration 9–3

HTTPd www.example.com:80
Server Administration (HTTPd:80)

When a particular instance’s administration service port is being used the process name is
separated from the page title by a hyphen

HTTPd www.example.com:80
Server Administration - HTTPd:80

Multi-instance status (see Section 8.1.4) snapshots are available via HTTPDMON, the Server
Admin main page and can be reported from the command line using

$ HTTPD /DO=STATUS

9.4 HTTPd Server Reports
The server provides a number of internally generated reports. Some of these are of general
interest. Others are more for evaluating WASD behaviour and performance for development
purposes. Appropriate reports have a refresh selector allowing the report to be updated at
the selected period. The following list is in the approximate order in which they occur top-to-
bottom, left-to-right in the menu layout.

It is possible to use this facility standalone, without configuring authorisation (Section 9.1).

• Statistics - Server process up-time, CPU-time and other resources consumed, number
of connections processed, number of requests of each HTTP method, type of processing
involved (HTTPd module used), number of bytes processed, etc.

• Log - Display the server process (SYS$OUTPUT) log.

• Configuration - A tabular summary of the server’s current configuration. This is a
convenient method for viewing the information from the WASD_CONFIG_GLOBAL file.

• Services - A tabular report listing the current services (virtual servers) and the service-
specific parameters.

• Messages - A tabular report of the server’s current message database, multiple languages
shown if configured that way.

• Mapping - All loaded mapping rules and any cached USER rule paths. A selector allows
rules applying only to one particular virtual server to be displayed.

• Path Authorization - If authorization is in use (Chapter 3) this report lists the paths
with associated authorization and access control.

• User Authentication - List any users that have been authorized since the server was
last started, the realm authorized from, the group it applies to (if any), and what the user’s
capabilities are (allowed HTTP methods). A time-stamp and counters provide additional
information.

• Secure Sockets - The SSL report lists counts of the number of SSL transactions initiated
and completed, along with session cache statistics for the currently connected SSL service.
It also lists the ciphers available and current session information. Other reports allow
the Certificate Authority (CA) database to be view and edited, if available due to X.509
authentication being enabled.

9–4 Server Administration

• AlnFlt - On Alpha and Itanium, memory access alignment faults are constantly
monitored. This displays the accumulated statistics since the most recent startup. Should
always be zero!

• Cache - Allows monitoring of cache behaviour and performance, as well as the files
currently in the cache (see ‘‘WASD Web Services - Install and Config’’).

• Cluster - For clustered systems generates a report similar to the System Report but with
a cluster emphasis.

• DCL Scripting - Provides some DCL, CGI and CGIplus scripting information.

DCL module statistics (same information as displayed in the server statistics report).
These are cumulative for the entire life of the system (unless zeroed).

Process information shows how many actual processes exist at the time of the report, as
indicated by the PID and bolded, non-zero liftime (in minutes). The soft-limit specifies
how many CGIplus scripts are allowed to continue existing before the least used is deleted
and the hard-limit show how many processes may actually exist at any one time (the
margin allows for process deletion latency). A count of how many times the CGIplus
processes have been explicitly purged (button available on this report page). The life-

time of zombie processes (in minutes, zero implying use of zombies is disabled) and the
number that have been purged due to expiry. CGIplus process life-time (in minutes,
zero implying indefinite), the number purged due to life-time expiry and the number of
CGIplus processes that the server has actually purged (deleted) to maintain the soft-limit
margin specified above.

Each of the allocated process data structures is listed. There may be zero up to hard-
limit items listed here depending on demand for DCL activities and the life of the server.
Items with a PID shown indicate an actual process existing. This can be a zombie process
or a CGIplus process. If no process is indicated then the other information represents
the state the last time the item’s associated process completed. Information includes the
script (URL-style path) or DCL command, total count of times the item has been used
and the last time it was. The zombie count indicates the number of time the same process
finished a request and entered the zombie state. The CGIplus column indicates it is/was
a CGIplus script and shows the total number of times that particular script has been/was
used. If the process is currently in use the client information show the client host name.

If any processes are associated with any data structure a purge button is provided that
forces all processes to be deleted. This can be useful if a new script image is compiled
and it is required all scripts now use this. If a script is currently processing a request
the process deletion occurs when that processing is complete. The purge button does not
force a process to delete, so a second button forces all processes to delete immediately.
This can be used to forceably clear errant scripts, etc., but be warned script processing is
indiscrimately stopped!

• DECnet Scripting - DECnet module information shows totals for DECnet scripting
usage and the DECnet connection list.

This list will grow, up to the specified configuration maximum, as conconurrent scripting
demand occurs. Maintained connections are indicated by the bolded, non-zero lifetime (in
minutes). When this reaches zero the task is disconnected. The current/last task for that

Server Administration 9–5

connection is indicated, along with the number of times the connection was reused and a
total number of uses for that list item.

Purge and force buttons allow current links to be broken after request completion or
forcibly disconnected.

• HTTP - Reports HTTP/2 and HTTP/1.n statistics together as well as providing a list of
current HTTP/2 connections with some per-connection data. See Chapter 5 for details.

• Lock - Lists the names and status of all lock resources used to manage single and
multiple instances across single systems or a cluster. This report is more relevant for
evaluating and debugging WASD behaviour.

• Match - To assist with the refinement of string matching patterns (see ‘‘WASD Web
Services - Install and Config’’). this report allows the input of target and match strings
and allows direct access to the server’s wildcard and regular expression matching routines.
Successful matches show the matching elements and a substitution field allows resultant
strings to be assessed.

• Memory - Provides a report and does an integrity check on each of the Virtual Memory
(VM) zones employed by the WASD HTTPd.

• Process - Lists all processes on the current system owned by the server account. From
this list a process can be selected to have a ‘‘SHOW PROCESS /ALL’’ performed on it,
displayed on a report page.

• Proxy - If proxy serving is enabled a report providing statistics on the various HTTP
methods used, network and cache traffic, cache reads and writes, requests not cachable,
and host name lookup are provided. This may used to help guage the effectiveness of the
cache.

• Request - Lists in-progress requests (always shows at least your own connection
accessing this report :-) Additional buttons after the report allow selection of a report
that in addition displays current persistent network connections, requests currently under
throttle control, and if enabled a list (history) of the most recent requests (enabled by the
configuration parameter [RequestHistory]). Current requests may be selected for one-shot

WATCH-processing reports from this page (Chapter 10).

Two other diagnostic tools are available from the same link. The first, WATCH-peek

Report, providing a snapshot of the contents selected internal fields and data structures
of the request. This is primarily intended as a problem investiagtion and development
tool, and will be of limited value without an understanding of server internals. The second
accesses the ‘‘peek’’ internals plus a one-shot WATCH-processing report.

For servers handling a great quantity of concurrent traffic this can generate a very large
report. The Supervisor report can also provide a profile of the servers current load.

• Supervisor - Provides a simple table displaying each timer list and any associated
request count. Shows how many requests are set be scanned and evaluated for continued
processing every so-many seconds. For very busy servers this is another method for
gaining an idea of the traffic profile (this is perhaps more meaningful for those with an
understanding of WASD internals).

• System - Shows the system, all users, memory and CPU status as a single report.

9–6 Server Administration

• Throttle - This report provides a list of paths with throttle rules mapped against them.
It provides the throttle values along with current and history activity counters.

• WATCH - This report provides an online, real-time, in-browser-window view of request
processing on the running server. See Chapter 10 for details.

• WebDAV - Provides configuration and statistics.

• WebSocket - Lists in-progress WebSocket requests with connection statistics and the
scripting process associated with.

• Activity - Provide a graphical snapshot of server activity of a given period.

The statistics are stored in a permanent global section and so carry-over between server
restarts. Where multiple instances are executing the data represents an accumulation of
all instances’ processing. It is enabled by the configuration parameter [ActivityDays]. The
Server Administration facility provides several, represented as a period of hours before
the present time. Number of requests and bytes sent to the client are represented by a
histogram with respective means for each by a line graph. A bar across the column of the
request histogram indicates the peak number of concurrent requests during the period. A
greyed area indicates no data available for that time (i.e. before the latest server startup,
or in the future).

Server startup and shutdown events are indicated by solid, vertical lines the full height
of the graph (see example for a restart event).

startup - green
shutdown - black
restart - grey
error exit - red

Activity data is accumulated on a per-minute basis. This is the maximum granularity
of any report. When reports are selected that can display less than this one minute
granularity (i.e. with periods greater than four hours) the value shown is the peak of
the number of minutes sampled for display. This better represents the load on the server
than would a mean of those samples.

The graph is an image map, various regions of which allow the selection of other reports
with different periods or durations. This allows previous periods to be examined at various
levels of detail using the graph for navigation. Various sections may have no mapping as
appropriate to the current report.

For multiple hour reports the upper and lower sections have distinct functions. The
middle 50% of the upper section allows the same end time (most commonly the current
hour) to be examined over twice the current period, in this case it would be over eight
hours. The left 25% allows the previous fours hours to be viewed (if such data exists), and
for non-current reports the right 25% allows the next four hours to be viewed. The lower
half can be divided into sections representing hours or days depending on the period of
the current report. This allows that period to be viewed in greater detail. For single hour
reports this section, of course, is not mapped.

Remember that the URL of the mapped section will be displayed in the status bar of the
browser. As the URL contains time components it is not a difficult task to decipher the
URL displayed to see the exact time and period being selected.

Server Administration 9–7

online graphic

9.5 HTTPd Server Revise
The server provides a comprehensive configuration revision facility.

• Configuration - A form-driven interface allows the current configuration of the server
to be altered online. This configuration may then be saved to the on-disk file and then
the server could be restarted using the new parameters. The source of the current
configuration can be either the server itself (from its volatile, in-memory parameters)
or from the on-disk configuration file. In addition it is possible to directly edit and update
the on-disk file.

• Services - A form-driven interface allows service (virtual server) configuration. It is
also possible to directly edit and update the on-disk file. The server must be restarted for
service changes to take effect.

• Messages - A form-driven interface allows the the server messages to be modified. It is
also possible to directly edit and update the on-disk file. The server can then be restarted
to use the modified database (Section 9.6).

• Mapping - No form-driven interface is currently available for changing the mapping
rules. However it is possible to directly edit and update the on-disk file. The mapping
rules could then be reloaded, changing the current server rules (Section 9.6).

• Path Authorization - No form-driven interface is currently available for changing the
path authorization configuration. However it is possible to directly edit and update the
on-disk file. The path authorization directives could the be reloaded, changing the current
server authorization (Section 9.6).

• User Authentication - User authentication comprises a number of dialogues that allow
the WASD-specific (HTA) authentication databases to be administered. These include:

creating databases
deleting databases
accessing databases for administering usernames
listing usernames within databases
adding usernames
deleting usernames
modifying username permissions and other data
reseting in-server (cached) authentication information

Chapter Chapter 3 covers authentication detail.

• Site Log - This accesses a plain-text file that could be used to record server or other
significant site configuration changes if desired. Two methods of access are provided.

1. Site-Log - open the file for editing, placing a date/time/author timestamp at the top

2. Edit - open the file editing

The file name and/or location may be specified using the logical name WASD_SITELOG.

9–8 Server Administration

Enabling Server Access

Many of the server activites listed above require server account write access to the directory
in which the configuration files are stored. Where an autononmous scripting account is in
use this poses minimal threat to server configuration integrity.

1. Specifically map the /wasd_root/local/ path and mark it as access always requiring
authorization (ensure this is one on the first mappings in the file and certainly before
any other /wasd_root/ ones).

WASD_CONFIG_MAP
pass /wasd_root/local/* auth=all

2. Add appropriate authorization rules (example from ‘‘WASD Web Services - Install and
Config’’).

WASD_CONFIG_AUTH
["Web Admin"=WASD_WEBADMIN=id]
/httpd/-/admin/* r+w
/wasd_root/local/* r+w

3. Update access to the directory can be applied using the SECHAN utility (Section 13.12).

$ SECHAN /WRITE WASD_ROOT:[000000]LOCAL.DIR
$ SECHAN /WRITE WASD_ROOT:[LOCAL]

4. Load the new mapping and authorization rules.

$ HTTPD /DO=MAP
$ HTTPD /DO=AUTH=LOAD

Alternative Using /PROFILE

If a site is using SYSUAF authentication and security profiles enabled using the /PROFILE
startup qualifier (Section 3.10.8) then a more restrictive set up is possible, retaining the
default no-access to the [LOCAL] directory. This relies on the administering account(s) having
read and write access to the [LOCAL] directory. It is then not necessary to grant that to the
server account. It is possible to limit the application of VMS user profiles. This is an example.

WASD_CONFIG_MAP
set /wasd_root/local/* profile auth=all
set * noprofile

To use this approach perform steps 1, 2 and 4 from above, substituting the following for step
3.

$ SECHAN /PACKAGE WASD_ROOT:[000000]LOCAL.DIR
$ SECHAN /PACKAGE WASD_ROOT:[LOCAL]
$ SECHAN /CONTROL WASD_ROOT:[000000]LOCAL.DIR

Server Administration 9–9

9.6 HTTPd Server Action
The server allows certain run-time actions to be initiated. Many of these functions can also
be initiated from the command line, see Section 9.7.

When multiple servers are executing on a single node or within a cluster a JavaScript-driven
checkbox appears in the bottom left of the administration menu. Checking that box applies
any subsequently selected action to all servers!

Control Section

• Server Restart/restartNOW/restartQuiet/Exit/exitNOW - The difference between
restart/exit and restartNOW/exitNOW is the former waits for any current requests to be
completed, while the latter does it immediately regardless of any current connections.
The restartQuiet variant continues processing until demand drops to zero for more than
one second at which point it commences restart. If the browser has JavaScript enabled a
cautionary alert requesting confirmation is generated (otherwise there is no confirmation).

• Logging On/Off/Flush - The WASD_CONFIG_LOG logical must be configured to allow
access logging to be enabled and disabled from this menu.

• Caching On/Off/Purge - Caching may be enabled and disabled in an ad hoc fashion
using these controls. When being disabled after being enabled all previous data is
retained. If subsequently reenabled that data is then again available for use. This allows
convenient assessment of the subject or even object benefits on the cahing. If purged all
entries in the cache are removed.

• Instance Startup - An instance value may be set that overrides the configuration
directive [InstanceMax] at next startup. This may be used to change the number of
server processes on an ad hoc basis. Reset to ‘‘max’’ to return to configuration control.
Note that this can be applied to the current node only or to all servers within a cluster,
and that a subsequent restart is required.

• /DO= Button and Field - Provides a on-line facility parallel to that provided by the
command-line /DO qualifier (Section 9.7). Any directive available via the command-line
can be entered using this interface and applied on a per-node or per-cluster basis.

Configuration Action Section

• Statistics Zeroed - All counters are zeroed (except the number-of-times-zeroed counter!)

• Mapping Rules Reload - Reloads the path mapping rules from the on-disk file into the
running server, clears the user SYSUAF mapping cache.

Caution! If changing CGIplus script mapping it is advised to restart the server rather
than reload. Some conflict is possible when using new rules while existing CGIplus scripts
are executing.

• Path Authorization Reload - Reloads the path authorization directives from the on-
disk file into the running server.

9–10 Server Administration

• User Authentication Cache Purge - For efficiency reasons authenticated user infor-
mation is cached for a limited period within the running server. All this cached infor-
mation may be completely purged using this action, forcing subsequent requests to be
reauthenticated from the on-disk database.

9.7 HTTPd Command Line
A foreign command for the HTTPD control functionality will need to be assigned in the
adminstration users’ LOGIN.COM, for example:

$ HTTPD == "$WASD_EXE:HTTPD"

or (perhaps more likely)

$ HTTPD == "$WASD_EXE:HTTPD_SSL"

Some control of the executing server is available from the DCL command line on the system
on which it is executing. This functionality, via the /DO= qualifier, is available to the
privileged user.

These directives are communicated from the command-line (and Server Administration page
analogue - Control Section) to the per-node or per-cluster servers using the Distributed Lock
Manager. On pre-VMS V8.2 the command buffer is limited to 15 bytes. From VMS V8.2 the
buffer space available is 63 bytes. In a cluster all systems must support the larger buffer
before WASD enables it. The smaller buffer space limits some of the directives that take
free-form parameters (e.g. /DO=DCL=PURGE=USER=DANIEL).

Multi-Server/Cluster-Wide

If multiple servers are executing on a host or cluster it is possible to control all of them by
adding the /CLUSTER or /ALL qualifiers. Of course, these commands are available from
batch jobs as well as interactively. In a clustered WASD environment the same functionality
is available via checkboxes from the online Server Administration facility.

Need it to be jogged?

Can’t quite remember what it can (and by implication can’t) do?

$ HTTPD /DO=HELP

Server Log Annotation

Significant server events (e.g. restart, exit, mapping rule change) can often benefit (post-
mortem :-) from an annotation in the server process log, especially in a production environ-
ment. The command-line /NOTE="<string>" can be used to insert the supplied string as an
ad hoc annotation, or in conjunction with a /DO=".." CLI command.

$ HTTPD /NOTE="just a note test!"
$ HTTPD /DO=RESTART /NOTE="adding services ""download."" and ""mail."""

The server process log annotation appear as follows.

%HTTPD-I-NOTE, 10-DEC-2017 22:32:30, just a note test!
%HTTPD-I-NOTE, 10-DEC-2017 22:33:05, adding services "download." and "mail."

Server Administration 9–11

Note may also be inserted from the Server Admin main page by using the [/DO=] button
and field and prefixing the string with /NOTE= (string delimitting quotation marks are not
required). Using the Server Admin page annotation and commands cannot be combined.

9.7.1 Accounting

Server counters may be zeroed. These counters are those visible from the statistics Server
Admininstration item and when using the HTTPDMON utility.

$ HTTPD /DO=ZERO

The HTTPDMON utility displays a status line during startup or server exit on error. For
example:

KLAATU:: 1 HTTPDMON v2.6.0 AXP Friday, 21-SEP-2018 21:40:54

Process: WASD:80 PID: 00001F9B User: HTTP$SERVER Version: 11.3.0
Up: 6 18:21:20.96 CPU: 0 00:07:25.54 Startup: 55 Exit: %X00000001

8< snip 8<
Rx: 1,365,809 (0 err) Tx: 26,965,420 (0 err) (477kB/s)

STATUS: %HTTPD-I-STARTUP, 21-SEP-2018 21:40:52, WASD:80

On occasion this can status message become constantly displayed (e.g. command-line
misoperation) with

$ HTTPD /DO=ZERO=STATUS

restoring normal request information.

9.7.2 Alignment Faults

On Alpha and Itanium platforms alignment faults can be a significant performance issue and
considerable effort has been invested in completely eliminating them. This was done using a
internal reporting tool (primarily intended for the WASD developer) available from the Server
Admin interface. Defining the logical name WASD_ALIGN_MAP to be a linker map of the
build provides additional information.

$ HTTPD /DO=ALIGN=START
$ HTTPD /DO=ALIGN=STOP
$ HTTPD /DO=ALIGN=ZERO
$ HTTPD /DO=ALIGN=FAULT=1

9.7.3 Authentication

See Chapter 3.

The authorization rule file (HTTP$AUTH) may be reloaded using either of these variants.

$ HTTPD /DO=AUTH
$ HTTPD /DO=AUTH=LOAD

The authentication cache may be purged, resulting in re-authentication for all subsequent
authorization-controlled accesses. This may be useful when disabling authorization or if a
user has been locked-out due to too many invalid password attempts (Section 3.9).

$ HTTPD /DO=AUTH=PURGE

9–12 Server Administration

A ‘‘skeleton-key’’ username and password may be entered, amongst things allowing access to
the Server Administration facility (Chapter 9).

$ HTTPD /DO=AUTH=SKELKEY=_<username>:<password>[:<period>]

9.7.4 Cache

Server cache control may also be exercised from the Server Administration page (Chapter 9).
The file cache (see ‘‘WASD Web Services - Install and Config’’ document, ‘‘Cache Configuration’’
section) may be enabled, disabled and have the contents purged (declared invalid and
reloaded) using

$ HTTPD /DO=CACHE=ON
$ HTTPD /DO=CACHE=OFF
$ HTTPD /DO=CACHE=PURGE

9.7.5 Configuration Check

Changes to configuration files can be validated at the command-line before reload or restart.
This detects and reports any syntactical and fatal configuration errors but of course cannot
check the intent of the rules.

$ HTTPD /DO=AUTH=CHECK
$ HTTPD /DO=CONFIG=CHECK
$ HTTPD /DO=GLOBAL=CHECK
$ HTTPD /DO=MAP=CHECK
$ HTTPD /DO=MSG=CHECK
$ HTTPD /DO=SERVICE=CHECK

The config check sequentially processes each of the authorization, global, mapping, message

and service configuration files.

If additional server startup qualifiers are required to enable specific configuration features
then these must also be provided when checking. For example:

$ HTTPD /DO=AUTH=CHECK /SYSUAF /PROFILE

9.7.6 DCL/Scripting Processes

These commands can be useful for flushing any currently executing CGIplus applications
from the server, enabling a new version to be loaded with the next access. See ‘‘Scripting
Environment’’ document.

All scripting processes, busy with a request or not, can be deleted (this may cause the client
to lose data).

$ HTTPD /DO=DCL=DELETE

A gentler alternative is to delete idle processes and mark busy ones for deletion when
completed processing.

$ HTTPD /DO=DCL=PURGE

Server Administration 9–13

For VMS V8.2 and later, a more selective DELETE and PURGE is possible. A user name,
script name, or script file name can be supplied and only matching tasks have the specified
action peformed.

$ HTTPD /DO=DCL=PURGE=USER=username
$ HTTPD /DO=DCL=PURGE=SCRIPT=script-path
$ HTTPD /DO=DCL=PURGE=FILE=script-file-name

9.7.7 DECnet Scripting Connections

All DECnet connections, busy with a request or not, can be disconnected (this may cause the
client to lose data).

$ HTTPD /DO=DECNET=DISCONNECT

Purging is a better alternative, disconnecting idle tasks and marking busy ones for discon-
nection when complete.

$ HTTPD /DO=DECNET=PURGE

9.7.8 Hhelppp!
$ HTTPD /DO=HELP

o ALIGN= START, STOP, ZERO with [<buf-size>,<items>,<mask>]
o AUTH reload authorization file
o AUTH=CHECK elementary check of authorization file

. . .
o ZERO zero all accounting
o ZERO=NOTICED zero the ’errors noticed’ accounting
o ZERO=PROXY zero proxy accounting

$

9.7.9 HTTP/2 Connection

Disconnect idle HTTP/2 connections.

$ HTTPD /DO=HTTP2=PURGE

All HTTP/2 connections can be disconnected (this may cause clients to lose data), or a specific
connection number.

$ HTTPD /DO=HTTP2=PURGE=ALL
$ HTTPD /DO=HTTP2=PURGE=number

9.7.10 Instances

The number of server instances (see Section 8.1) may be set from the command line. This
overrides any configuration file directive and applies at the next startup. Any configuration
directive value may be used from the command line.

$ HTTPD /DO=INSTANCE=MAX
$ HTTPD /DO=INSTANCE=CPU
$ HTTPD /DO=INSTANCE=integer

9–14 Server Administration

Note that the server must be restarted for this to take effect, that this can be
applied to the current node only or to all servers within a cluster, and that it remains in
effect until explicitly changed to ‘‘MAX’’ allowing the WASD_CONFIG_GLOBAL configuration
directive [InstanceMax] to once again determine the number of instances required. The same
functionality is available from the Server Administration page (Section 9.6).

There are also directives to assist with WATCH activities (Section 10.1).

$ HTTPD /DO=INSTANCE=PASSIVE
$ HTTPD /DO=INSTANCE=ACTIVE

9.7.11 Instance Status

Multi-instance (see Section 8.1) status (see Section 8.1.4) can be reported from the command
line using

$ HTTPD /DO=STATUS

In addition, stale entries in the status table may be purged using

$ HTTPD /DO=STATUS=PURGE

and the table completely emptied then repopulated over the next minute using

$ HTTPD /DO=STATUS=RESET

9.7.12 Logging

Server logging control may also be exercised from the server administration menu (Chapter 9).

Open the access log file(s).

$ HTTPD /DO=LOG=OPEN

Close the access log file(s).

$ HTTPD /DO=LOG=CLOSE

Close then reopen the access log file(s).

$ HTTPD /DO=LOG=REOPEN

Unwritten log records may be flushed to the file(s).

$ HTTPD /DO=LOG=FLUSH

9.7.13 Mapping

See ‘‘WASD Web Services - Install and Config’’ .

The mapping rule file (WASD_CONFIG_MAP) may be reloaded using either of these variants.

$ HTTPD /DO=MAP
$ HTTPD /DO=MAP=LOAD

Server Administration 9–15

9.7.14 Network Connection

Disconnect idle (persistent) connections.

$ HTTPD /DO=NET=PURGE

All network connections can be disconnected (this may cause clients to lose data), a specific
connection number and those matching the specified URI.

$ HTTPD /DO=NET=PURGE=ALL
$ HTTPD /DO=NET=PURGE=number
$ HTTPD /DO=NET=PURGE=URI=pattern

Additionally, network connection acceptance can be suspended (leaving in-progress requests
to complete), suspended and in-progress disconnected, and resumed.

$ HTTPD /DO=NET=SUSPEND
$ HTTPD /DO=NET=SUSPEND=NOW
$ HTTPD /DO=NET=RESUME

9.7.15 Shutdown and Restart

Server shutdown may also be exercised from the Server Administration page (Chapter 9).

The server may be shut down, without loss of existing client requests. Connection acceptance
is stopped and any existing requests continue to be processed until conclusion.

$ HTTPD /DO=EXIT

The server may be immediately and unconditionally shut down.

$ HTTPD /DO=EXIT=NOW

The server may be restarted, without loss of existing client requests. Connection acceptance
is stopped and any existing requests continue to be processed until conclusion. This effectively
causes the server to exit normally and the DCL wrapper procedure to restart it.

$ HTTPD /DO=RESTART

The now variant restarts the server immediately regardless of existing connections.

$ HTTPD /DO=RESTART=NOW

The when-quiet variant restarts the server whenever request processing drops to zero for
more than one second. It allows (perhaps non-urgent) changes to be put into effect through
restart when everything has gone ‘‘quiet’’ and no demands are being placed on the server.

$ HTTPD /DO=RESTART=QUIET

Significant server events such as these are prime candidates for server log annotation!

$ HTTPD /DO=RESTART=NOW /NOTE="Restarting the server just so I can note it :-)"

9–16 Server Administration

9.7.16 Secure Sockets Layer

If the optional SSL component is installed and configured these directives become effective.

If X.509 authentication is enabled the Certificate Authority (CA) verification list can be
reloaded.

$ HTTPD /DO=SSL=CA=LOAD

Server certificates, after being updated, may be reloaded into the running services (i.e.
without restart). This is a synonym for /DO=SERVICE=LOAD.

$ HTTPD /DO=SSL=CERT=LOAD

If a private key password is not included with the encode key it is requested by the server
during startup. The following example shows the directive and the resulting prompt. When
entered the password is not echoed.

$ HTTPD /DO=SSL=KEY=PASSWORD
Enter private key password []:

Service SSL parameters may be (re)loaded from the configuration file and modified on the
running server (i.e. without restart), for all existing services or just a single, specified service.

$ HTTPD /DO=SSL=SERVICE=LOAD
$ HTTPD /DO=SSL=SERVICE=LOAD=host:port

9.7.17 Throttle

Unconditionally release all queued requests for immediate processing.

$ HTTPD /DO=THROTTLE=RELEASE

Unconditionally terminate all requests queued waiting for processing. Clients receive a 503
‘‘server too busy’’ response.

$ HTTPD /DO=THROTTLE=TERMINATE

For VMS V8.2 and later, a more selective RELEASE and TERMINATE is possible. A user
name or script name can be supplied and only matching requests have the specified action
peformed.

$ HTTPD /DO=THROTTLE=TERMINATE=REMOTE=pattern
$ HTTPD /DO=THROTTLE=TERMINATE=SCRIPT=pattern

9.7.18 WebSocket

Unconditionally disconnects all WebSocket applications.

$ HTTPD /DO=WEBSOCKET=DISCONNECT

For VMS V8.2 and later, more selective disconnects are possible. Disconnects WebSocket
applications with connection number, with matching script names, and with matching
scripting account usernames, respectively.

$ HTTPD /DO=WEBSOCKET=DISCONNECT=number
$ HTTPD /DO=WEBSOCKET=DISCONNECT=SCRIPT=pattern
$ HTTPD /DO=WEBSOCKET=DISCONNECT=USER=pattern

Server Administration 9–17

Chapter 10

WATCH Facility

The WATCH facility is a powerful adjunct in server administration. From the Server Admin-
istration facility (Chapter 9) it provides an online, real-time, in-browser-window view
of request processing in the running server. The ability to observe live request process-
ing on an ad hoc basis, without changing server configuration or shutting-down/restarting
the server process, makes this facility a great configuration and problem resolution tool. It
allows (amongst other uses)

assessment of mapping rules
assessment of authorization rules
investigation of request processing problems
observation of script interaction
general observation of server behaviour

A single client per server process can access the WATCH facility at any one time. It can be
used in one of two modes.

• As a one-shot, one-off WATCH of a particular request. This is available from the Request

Report page of the Server Administration facility. In this case the single indicated request
is tagged to be WATCHed in all categories (see below) for the duration of the request (or
until the client stops WATCHing).

• As described in the following chapter the server and all new requests being processed are
candidates for being WATCHed. Categories are selected before initiating the WATCH and
the report can be generated for a user-specified number of seconds or aborted at any time
using the browser’s stop button.

Options immediately below the duration selector allows the WATCH output to concurrently
be included in the server process log. This allows a permanent record (at least as permanent
as server logs) to be simply produced.

WATCH Facility 10–1

10.1 Server Instances
With a single instance (see Section 8.1) access to WATCH is always through the one server
process. If multiple instances are configured WATCH requests, in common with all others,
will be serviced by any one of the associated processes depending on the momentary state of
the round-robin distribution.

This is often an issue for request WATCHing. The simplest scenario involves two instances.
When the WATCH report is activated it will be serviced by the first process, when the request
wishing to be WATCHed is accessed it (in the absence of any other server activity) will be
serviced by the other process and will not be reported by WATCH on the first.

The solution is to suspend the round-robin request processing for the period of the WATCH
activity. This does not shut any instance down but instead makes all but the supervisor
instance quiescent. (Technically, it dequeues all the listening I/Os from non-supervisor
instance server sockets, making the TCP/IP network driver send all connection requests to
the one instance left with listening I/Os.) It is just a matter of making the non-supervisor
instances active again when the WATCH activity is concluded.

This may be done from the command-line using

$ HTTPD /DO=INSTANCE=PASSIVE
$ HTTPD /DO=INSTANCE=ACTIVE

or using the Server Administration facility (Chapter 9) where there are [Active] and [Passive]
buttons available when multiple instances are in use. Neither transition disrupts any
requests being established or in-progress.

10.2 Event Categories
An event is considered any significant point for which the server code has a reporting call
provided. These have been selected to provide maximum information with minimum clutter
and impact on server performance. Obvious examples are connection acceptance and closure,
request path resolution, error report generation, network reads and writes, etc. Events are
collected together into groupings to allow clearly defined areas of interest to be selected for
reporting.

online graphic

The report menu provides for the inclusion of any combination of the following categories.

Request

• Processing - Each major step in a request’s progress. For example, path resolution and
final response status.

• Header - Provides the HTTP request header as a section of blank-line terminated text.

• Body - The content (if a POST or PUT method) of the request. This is provided as a
hexadecimal dump on the left and with printable characters rendered on the right, 32
bytes per line.

10–2 WATCH Facility

Response

• Processing - Each major step in generating a response to the request. These generally
reflect calls to a major server module such as file CACHE, FILE access, INDEX-OF, SSI
processing, etc. One or more of these events may occur for each request. For instance a
directory listing will show an INDEX-OF call and then usually a FILE call as any read-me
file is accessed.

• Header - The blank-line terminated HTTP header to the response. Only server-
generated headers are included. Scripts that provide a full HTTP stream do not have
the header explicitly reported. The response body category must be enabled to observe
these (indicated by a STREAM notation).

• Body - The content of the response. This is provided as a hexadecimal dump on the left
and with printable characters rendered on the right, 32 bytes per line. Some requests also
generate very large responses which will clutter output. Generally this category would
be used when investigating specific request response body problems.

General

• Connection - Each TCP/IP connection acceptance and closure. The connect shows which
service the request is using (scheme, host name and port).

• Path Mapping - This, along with the authorization report, provides one of the most
useful aspects of the WATCH facility. It comprises an event line indicating the path to be
mapped (it can also show a VMS file specification if a reverse-mapping has been requested).
Then as each rule is processed a summary showing current path, match ‘‘Y’’/‘‘N’’ for each
path template and any conditional, then the result and conditional. Finally an event
entry shows the resulting path, VMS file specification, any script name and specification
resolved. The path mapping category allows the administrator to directly assess mapping
rule processing with live or generated traffic.

• Authorization - When authorization is deployed this category shows the rules examined
to determine if a path is controlled, any authentication events in assessing username and
password, and the consequent group, user and request capabilities (read and/or write) for
that path. No password information is displayed.

• Error - The essential elements of a request error report are displayed. This may include
a VMS status value and associated system message.

• CGI - This category displays the generated CGI variable names and values as used by
various forms of scripting and by SSI documents, as well as the processing of the response
header returned by scripts.

• DCL - Debugging scripts can sometimes present particular difficulties. This category may
help. It reports on all input/output streams with the process (SYS$INPUT, SYS$OUTPUT,
SYS$COMMAND, CGIPLUSIN).

• DECnet - For the same reason as above this category reports all DECnet scripting
input/output of the DECnet link. In particular, it allows the observation of the OSU
scripting protocol.

WATCH Facility 10–3

• WebDAV - Provides WebDAV specific processing points including request and meta-data
XML associated with resources.

Network

• Activity - For each raw network read and write the VMS status code and size of the I/O
is recorded.

• Data - For each raw network read or write the contents are provided as a hexadecimal
dump on the left and with printable characters rendered on the right, 32 bytes per line.

• HTTP/2 - Provides a detailed overview of the underlying HTTP/2 framing and connection
management exchanges between client and server. See HTTP/2 and WATCH for further
detail.

Other

• Logging - Access logging events include log open, close and flush, as well as request
entries.

• Match - Shows a significant level of detail during string matching activities. May be
useful during mapping, authorization and conditional processing.

• Script - Sets CGI variable WATCH_SCRIPT allowing a script to explicitly detect this so
as to output specific debugging or other information when being WATCHed.

• SSL - If the Secure Sockets Layer image is in use this category provides a indication of
high-level activity.

• Internal - Includes information on other significant internal server processing. Examples
are dictionary entries at various stages of request processing, and the high-level timing
and timeout events occuring within that processing and the server in general.

Proxy

• Processing - Each major step during the serving of a proxied request.

• Request Header - The proxy server rebuilds the request originally received from the
client. This category shows that rebuilt request, the one that is sent to the remote server.

• Request Body - In the case of HTTP POST or PUT methods any request body is
displayed. This is provided as a hexadecimal dump on the left and with printable
characters rendered on the right, 32 bytes per line.

• Response Header - The blank-line terminated HTTP header to the response from the
remote, proxied server.

• Response Body - The content of the response sent from the remote server. This is
provided as a hexadecimal dump on the left and with printable characters rendered on
the right, 32 bytes per line.

10–4 WATCH Facility

• Cache - When proxy caching is enabled this category provides information on cache
reading (serving a request from cache) and cache loading (writing a cache file using the
response from a remote server). It will provide a reason for any request or response it
does not cache, as well as report errors during file processing.

• Cache Maintenance - This category is not related to request processing. It allows
routine and reactive cache purging activities to be watched.

Code Modules

If the server has been compiled using the WATCH_MOD=1 macro a set of module WATCHing
statements is included. These provide far more detailed processing information than available
with the generic WATCH, are intended primarily for debugging the server during development
and testing. This is considered a specialized tool, with the quantity and level of detail
produced most likely proving counter-productive in addressing general site configuration
issues. The module items are shown below the usual WATCH items.

10.3 Request Filtering
By default all requests to all services are WATCHed. Fine control may be exercised over
exactly which requests are reported, allowing only a selected portion of all requests being
processed to be concentrated on, even on a live and busy server. This is done by filtering

requests according the following criteria.

• Protocol - The HTTP protocol being used to transport the request. Multiple protocols
may be selected and concurrently filtered against.

• Client - The originating host name or address. Unless server DNS host name resolution
is enabled this must be expressed in dotted-decimal notation.

• Service - The service connected to. This includes the scheme of the service (i.e. ‘‘http:’’,
‘‘https:’’), the host name (real or virtual), and the port. The host name is the official name
of the service as reported during server startup. As the port number is a essential part
of the service specification it must always be explicitly supplied or wildcarded.

• Request - This filter operates on the entire HTTP request header. All fields supplied
with the request are available to be filtered against. As this is a large, multi-line dataset
filters can become quite complex and regular expression (see ‘‘WASD Web Services - Install
and Config’’ document, ‘‘String Matching’’ section) matching may be useful (see examples
below).

• Path/Track - Either, the request path, or a specific track identifier string. A path
may be specified with a leading ‘‘/’’ for local paths or if WATCHing proxy requests
with a full, or part of a full, URL. To WATCH requests associated with a particular
access track (see ‘‘WASD Web Services - Install and Config’’ document, ‘‘Access Tracking’’
section) enter the track’s unique identifier string preceded by a dollar symbol (e.g.
‘‘$ORoKJAOef8sAAAkuACc’’).

• Realm & User - This filters against request authentication information. As authoriza-
tion occurs relatively late in request processing some data reported earlier by WATCH
will not be available.

WATCH Facility 10–5

• HTTP Status - This allows a class of response status (1 (informational), 2 (success), 3
(redirection), 4 (client error) and 5 (server error)) or a specific response status (e.g. 200
(success), 404 (not found), 503 (service unavailable), etc.) to be filtered into the WATCH
report. As this happens very late in request processing the number of reported events
are limited but may provide some insight into particular processing problems.

In addition there are in and out selectors against each of the filters which include or exclude
the particular request based on it matching the filter.

These filters are controlled using fully-specified, wildcarded strings or using regular expres-
sion patterns (see ‘‘WASD Web Services - Install and Config’’ document, ‘‘Request Process-
ing Configuration’’ section). In common with all WASD processing, filter matching is case-
insensitive. Of course, due to the point of application of a particular filter during request
processing, some information may or may not be displayed. When a request is into or out of
the report because of a matching filter a FILTER informational item is reported.

Examples

1. This first example shows various strings and patterns that could be applied to the client
filter.

alpha.example.com
*.example.com
131.185.250.202
131.185.250.*
^10.68.250.*|10.68.251.*

2. This example various filters applied to the service (virtual server).

beta.example.com:8000
beta.example.com:*
http://*
https:*
*:80

3. The request filter contains the entire HTTP request header. This includes multiple,
newline-delimited fields. Filtering can be simple or quite complex. These examples filter
all POST requests (either in or out of the report depending on the respective selector),
and all POSTs to the specified script respectively.

POST *
POST /cgi-bin/example*

These are the equivalent regular expressions but also will stop comparing at the end of
the initial request line. The second, in this case, will also only filter against HTTP/1.1
version requests (note the final period matching the <CR> of the <CR><LF> carriage
control).

^^POST .*$
^^POST */cgi-bin/example *HTTP/1\.1.$

This example uses a regular expression to constrain the match to a single header field
(line, or newline-delimited string), matching all requests where the user agent reports
using the ‘‘Gecko’’ browser component (Mozilla, Firefox, etc.)

^^User-agent:.*Gecko.*$

10–6 WATCH Facility

4. The path and track filter. The path contains a proxied origin server request and so can
be used to filter proxy requests to specific sites.

/wasd_root/src/*
/cgi-bin/*
/web/*/cyrillic/*
$ORoKJAOef8sAAAkuACc
http://proxied.host.name/*

5. The authentication filters, realm and user, can be used to select requests for a particular
authenticated user, all authenticated requests or all non-authenticated requests, amongst
other application. The realm field allows the authenticated user to be further narrowed
as necessary. All of the following examples show only the user field with the default in

selector set.

Authenticated requests for user DANIEL.

DANIEL

All authenticated requests.

%*

10.4 Report Format
The following example illustrates the format of the WATCH report. It begins with multi-line
heading. The first two record the date, time and official server name, with underline. The
third provides the WASD server version. The fourth provides some TCP/IP agent information.
Lines following can show OpenSSL version (if deployed), system information, server startup
command-line, and then current server process quotas. The last three lines of the header
provide a list of the categories being recorded, the filters in use, and the last, column headings
described as follows:

time the event was recorded
the module name of the originating source code
the line in the code module
a unique item number for each thread being WATCHed
event category name
free-form, but generally interpretable event data

online graphic

Note that some items also include a block of data. The request header category does
this, providing the blank-line terminated text comprising the HTTP header. Rule mapping
also provides a block of information representing each rule as it is interpreted. Generally
WATCH-generated information can be distinguished from other data by the uniform format
and delimiting vertical bars. Initiative and imagination is sometimes required to interpret
the free-form data but a basic understanding of HTTP serving and a little consideration
is generally all that is required to deduce the essentials of any report. (Report manually
wrapped for completeness.)

WATCH Facility 10–7

HTTPd-WASD/11.0.0 OpenVMS/AXP SSL (24-FEB-2016 12:02:29.57)
HP TCPIP$IPC_SHR V5.7-ECO1 (21-MAY-2010 14:44:46.64)
OpenSSL 1.0.2f 28 Jan 2016 (30-JAN-2016 09:50:05.33) [WASD_ROOT.SRC.OPENSSL-\
1_0_2F.INCLUDE.OPENSSL]*.H WASD [ALPHA.EXE.SSL]SSL_LIBSSL32.OLB
$ CC (V8.3/70390009) /DECC /STAND=RELAXED_ANSI /PREFIX=ALL /OPTIMIZE /NODEBUG \
/WARNING=(NOINFORM,DISABLE=(PREOPTW)) /FLOAT=IEEE /IEEE=DENORM /DEFINE=(WASD_VMS_V7,SESOLA,WATCH_CAT=1,WATCH_MOD=0,WASD_ACME=1)
Digital Personal WorkStation with 1 CPU and 1536MB running VMS V8.3 (ODS-5 \
enabled, VMS NAML, VMS FIB, ZLIB disabled, REGEX enabled, lksb$b_valblk[64])
$ HTTPD /PRIORITY=4 /SYSUAF=(ID,SSL)/PERSONA=RELAXED/PROFILE
AST:1983/2000 BIO:1986/2000 BYT:49966656/49999424 DIO:5000/5000 ENQ:453/500 \
FIL:294/300 PGFL:451216/500000 PRC:0/100 TQ:97/100
DCL Scripting: detached, as HTTP$NOBODY, PERSONA enabled
Process: WASD:80 OTHER 1DKA0:[wasd_root.][STARTUP]STARTUP_SERVER.COM;44
1DKA0:[wasd_root.][LOG_SERVER]KLAATU_20160224171154.LOG;1
Instances: KLAATU::WASD:80
Watching: connect, request, req-header, response, res-header, error (603) via HTTP/2
Filter: NONE
|Time_______|Module__|Line|Item|Category__|Event...|
|01:57:59.30 WATCH 1713 0001 CONNECT HTTP/2 with 192.168.1.2,58855 on \
https://wasd.*****.***,443 (0.0.0.0)|
|++
|01:57:59.30 HTTP2REQ 0235 0001 REQ-HEADER HEADER 463 bytes|
GET /httpd/-/admin/ HTTP/1.1
cache-control: max-age=0
authorization: Basic ************************
accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
upgrade-insecure-requests: 1
user-agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_3) AppleWebKit/537.36 \
(KHTML, like Gecko) Chrome/48.0.2564.116 Safari/537.36
dnt: 1
accept-encoding: gzip, deflate, sdch
accept-language: en-US,en;q=0.8
host: wasd.*****.***:443

|01:57:59.32 REQUEST 2980 0001 REQ-HEADER DATA|
ENTRY 001 [012] $ {12}request_line={28}GET /httpd/-/admin/ HTTP/1.1
ENTRY 002 [024] > {13}cache-control={9}max-age=0
ENTRY 003 [031] > {13}authorization={30}Basic ************************
ENTRY 004 [014] > {6}accept={74}text/html,application/xhtml+xml,\
application/xml;q=0.9,image/webp,*/*;q=0.8
ENTRY 005 [010] > {25}upgrade-insecure-requests={1}1
ENTRY 006 [001] > {10}user-agent={121}Mozilla/5.0 (Macintosh; Intel Mac OS X \
10_11_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.116 Safari/537.36
ENTRY 007 [004] > {3}dnt={1}1
ENTRY 008 [018] > {15}accept-encoding={19}gzip, deflate, sdch
ENTRY 009 [007] > {15}accept-language={14}en-US,en;q=0.8
ENTRY 010 .024. > {4}host={22}wasd.*****.***:443
|01:57:59.35 SERVICE 1721 0001 CONNECT VIRTUAL wasd.*****.***:443|
|01:57:59.35 REQUEST 3640 0001 REQUEST GET /httpd/-/admin/|
|01:57:59.38 ADMIN 0250 0001 RESPONSE ADMIN /httpd/-/admin/|
|01:57:59.39 NET 2308 0001 RES-HEADER DATA|
ENTRY 001 .018. $ {15}response_status={3}200
ENTRY 002 [028] < {12}x-user-agent={121}Mozilla/5.0 (Macintosh; Intel Mac OS X \
10_11_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.116 Safari/537.36
ENTRY 003 .011. < {6}server={34}HTTPd-WASD/11.0.0 OpenVMS/AXP SSL
ENTRY 004 [002] < {4}date={29}Wed, 24 Feb 2016 15:27:59 GMT
ENTRY 005 .005. < {13}accept-ranges={5}bytes
ENTRY 006 [008] < {15}accept-encoding={13}gzip, deflate
ENTRY 007 [020] < {25}strict-transport-security={16}max-age=16416000

10–8 WATCH Facility

ENTRY 008 .004. < {7}expires={29}Fri, 13 Jan 1978 14:00:00 GMT
ENTRY 009 [030] < {13}cache-control={18}no-cache, no-store
ENTRY 010 .028. < {6}pragma={8}no-cache
ENTRY 011 .030. < {12}content-type={29}text/html; charset=ISO-8859-1
ENTRY 012 [006] < {14}content-length={5}15719
|01:57:59.40 HTTP2REQ 0713 0001 RES-HEADER HEADER 497 bytes|
HTTP/1.1 200 OK
x-user-agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_3) AppleWebKit/537.\
36 (KHTML, like Gecko) Chrome/48.0.2564.116 Safari/537.36
server: HTTPd-WASD/11.0.0 OpenVMS/AXP SSL
date: Wed, 24 Feb 2016 15:27:59 GMT
accept-ranges: bytes
accept-encoding: gzip, deflate
strict-transport-security: max-age=16416000
expires: Fri, 13 Jan 1978 14:00:00 GMT
cache-control: no-cache, no-store
pragma: no-cache
content-type: text/html; charset=ISO-8859-1
content-length: 15719

|01:57:59.41 REQUEST 1143 0001 REQUEST STATUS 200 (OK) rx:29 tx:15809 \
bytes 0.109368 seconds 144,813 B/s|
|--
|01:58:50.58 end|

10.5 Usage Suggestions
The following provides a brief explanation on the way WATCH operates and any usage
implications.

A single client may be connected to the WATCH facility at any given time. When connecting
the client is sent an HTTP response header and the WATCH report heading lines. The request
then remains connected until the WATCH duration expires or the client overtly aborts the
connection. During this period the browser behaves as if receiving a sometimes very slow,
sometimes stalled, plain-text document. As the server processes WATCHable events the text
generated is sent to the WATCH-connected client.

If the connection is aborted by the user some browsers will consider document retrieval to be
incomplete and attempt to reconnect to the service if an attempt is made to print or save the
resulting document. As the printing of WATCH information is often quite valuable during
problem resolution this behaviour can result in loss of information and generally be quite
annoying. Appropriate use of the duration selector when requesting a report can work around
this, as at expiry the server disconnects, browsers generally interpreting this as legitimate
end-of-document (when no content-length has been specified).

During report processing some browsers may not immediately update the on-screen informa-
tion to reflect received data without some application activity. If scroll-bars are present on the
document window manipulating either the horizonal or vertical slider will often accomplish
this. Failing that minimizing then restoring the application will usually result in the most
recent information being visible.

Browser reload/refresh may be used to restart the report. A browser will quite commonly
attempt to remain at the current position in the document, which with a WATCH report’s
sustained but largely indeterminate data stream may take some time to reach. It is suggested

WATCH Facility 10–9

the user ensure that any vertical scroll-bar is at the beginning of the current report, then
refresh the report.

Selecting a large number of categories, those that generate copious output for a single event
(e.g. response body) or collecting for extended periods can all result in the receipt of massive
reports. Some browsers do not cope well with documents megabytes in size.

Note
WATCH reports are written using non-blocking I/O into an internal buffer. This
buffer is written when filled, or flushed on a one second timer. Slight latency may
be experienced with sporadic WATCH report items.

When supplying WATCH output as part of a problem report please ZIP the file and
include it an an e-mail attachment. Mailers often mangle the report format making it difficult
to interpret.

10.6 Command-Line Use
Although intended primarily as a tool for online use WATCH can be deployed at server
startup with a command-line qualifier and provide report output to the server process log.
This is slightly more cumbersome than the Web interface but may still be useful in some
circumstances. Full control over event categories and filters is possible.

• /NOWATCH Disables the use of the online WATCH facility.

• /WATCH= Enables the server WATCH facility, dumping to standard output (and the
server process log if detached). When in effect the online facility is unavailable. The
string supplied to the qualifier may comprise four comma-separated components. Only
the first is manadatory. Stated order is essential. It will probably be necessary to enclose
the complete string in quotation marks.

• LIST - The LIST keyword provides a list of all the categories (items) available for
WATCHing.

• NOSTARTUP - This keyword suppresses WATCH output until the server is ready
to process requests. It must be the leading keyword.

• items - A parenthesized, comma-separated list of category keywords. Available
keywords can be displayed using the LIST facility.

• filters - A client, service and path filters can be provided following the specification of
required items. They must be provided in the order listed above. Leading filters that
are not required must be provided as single, asterisk wildcards. WATCH parameter
with filters containing forward-slashes will require quoting.

The following examples illustrate the command-line WATCH specification.

/NOWATCH
/WATCH=NOSTARTUP,ITEMS=(REQUEST,RESPONSE,MAPPING)
/WATCH="ITEMS=(REQUEST,RESPONSE,ERROR),*,*,/cgi-bin/*"
/WATCH=LIST

10–10 WATCH Facility

Chapter 11

Server Performance

The server has a single-process, multi-threaded, asynchronous I/O design. On a single-
processor system this is the most efficient approach. On a multi-processor system it is
limited by the single process context (with scripts executing within their own context). For
I/O constrained processing (the most common in general Web environments) the AST-driven
approach is quite efficient.

WASD v10 Data
Please note that relative performance data has not yet been generated for WASD
v11. What follows is v10 data. WASD v11 is very similar in most respects, especially
for HTTP/1.1 processing, and so the relativities here likely remain valid even if the
absolute numbers might be marginally different.

As also related in Section 5.2, on the developer’s bench using the same (HTTP/1.1)
load profile** with WASD v11.0 compared to v10.4 showed ~5% additional CPU and
duration (with v11.0). This is (probably) largely due to dictionary processing.

** 100 individual files, size 2kB to 250kB, 50 concurrent, ~30% CPU utilisation (~5%

USER mode, mostly INTERRUPT servicing), batched 10,000 at a time over a LAN.

The test-bench system was an HP rx2600 (Itanium 1.40GHz/1.5MB) with 2 CPUs and
8191MB, running VMS V8.3-1H1 and HP TCP/IP Services Version V5.6 - ECO 2.

Many thanks to Kednos (http://www.kednos.com) for the use of the system.

The performance data is collected using the ‘‘WASDbench’’ utility (Section 13.14). Previous
performance measurements had been made using the ApacheBench utility (Section 13.6) but
experimenting with both it was observed that (perhaps the asynchronous I/O of) WASDbench
provided generally greater throughput and less variation on this higher performance Itanium
platform. DCL procedures with sets of WASDbench calls are used to benchmark requests.
These procedures and the generated output from benchmark runs (collected via $@proce-

dure/OUTPUT=filename) are available in the WASD_ROOT:[EXERCISE] directory.

Server Performance 11–1

These results are indicative only!

On a multi-user system too many things vary slightly all the time.

Every endeavour has been made to ensure the comparison is as equitable as possible. Each
server executes at the same process priority, access logging and host name lookup disabled,
and runs on the same machine in the same relatively quiescent environment. Each test
run was interleaved between each server to try and distribute any environment variations.
Those runs that are very high throughput use a larger number of requests to improve sample
period validity. All servers were configured pretty-much ‘‘out-of-the-box’’, minimal changes
(generally just enough to get the test environment going). The server and test-bench utility
were located on the same system eliminating actual data on the wire. Multiple data collections
have yielded essentially the same relative results.

For the test-bench WASD v10.0 is present on port 7080.

OSU Comparison

The OSU comparison used the v3-11 release suitable for Itanium. OSU is executing in kernel-
threads mode (‘‘M’’). OSU is present on port 7777.

Apache Comparison

The Apache comparison used the latest CSWS (CSWS-V0201, based on v2.0.52), Perl (CSWS_
PERL-V0201) and PHP (CSWS_PHP-V0210) kits, and any required updates/ECOs, available
at the time of collection. Apache is present on port 8888.

11.1 Simple File Request Turn-Around
A series of tests using batches of accesses. The first test returned an empty file measuring
response and file access time, without any actual transfer. The second requested a file of
64K characters, testing performance with a more realistic load. All were done using one and
ten concurrent requests. Note that the Apache measurement is ‘‘out-of-the-box’’ - the author
could find no hint of a file cache, let-alone how to enable/disable one. Each request required
a complete TCP connection and disposal.

Cache Disabled

Concurrency 1 - Requests/Second

Response WASD OSU Apache

0K 137 90 32

64K 126 63 33

Concurrency 10 - Requests/Second

11–2 Server Performance

Response WASD OSU Apache

0K 112 96 28

64K 98 75 29

Cache Enabled

Concurrency 1 - Requests/Second

Response WASD OSU Apache

0K 1606 1252 27

64K 862 562 30

Concurrency 10 - Requests/Second

Response WASD OSU Apache

0K 1730 1580 29

64K 982 672 28

Result files:

WASD_ROOT:[EXERCISE]PERF_FILES_NOCACHE_WB_V10.TXT
WASD_ROOT:[EXERCISE]PERF_FILES_WB_V10.TXT

The difference between cached and non-cached result with the zero file size (no actual data
transfer involved) gives some indication of the raw difference in response latency, some 5x
improvement. It also indicates the relative efficiencies of file-system access. This is a fairly
BASIC analysis, but does give an approciation of the utility and efficiencies of having an
in-server cache.

File Transfer Rate

Requests for a large binary file indicate a potential transfer rate of many tens of Mbytes
per second. On the test-bench this data does not get onto the wire of course but it does serve
to demonstrate that server architecture should not be the limiting factor in file throughput.

Transfer Rate - MBytes/Second

Response Concurrent WASD OSU Apache

13MB (26134 blocks) 1 113 71 85

13MB (26134 blocks) 10 115 58 93

Result file:

Server Performance 11–3

WASD_ROOT:[EXERCISE]PERF_XFER_WB_V10.TXT

File Record Format

The WASD server can handle STREAM, STREAM_LF, STREAM_CR, FIXED and UNDE-
FINED record formats very much more efficiently than VARIABLE or VFC files. With
STREAM, FIXED and UNDEFINED files the assumption is that HTTP carriage-control is
within the file itself (i.e. at least the newline (LF), all that is required required by browsers),
and does not require additional processing. With VARIABLE record files the carriage-control
is implied and therefore each record requires additional processing by the server to supply it.
Even with variable record files having multiple records buffered by the HTTPd before writing
them collectively to the network improving efficiency, stream and binary file reads are by
Virtual Block and are written to the network immediately making the transfer of these very
efficient indeed!

CPU Consumed

Just one other indicative metric; CPU time consumed during the file request runs. The value
for Apache was not measured as it would be distributed over an indeterminate number of
child processes.

CPU Time Consumed (Seconds)

Cache WASD OSU

Disabled 4.36 12.75

Enabled 1.51 3.32

Result files (towards end of each):

WASD_ROOT:[EXERCISE]PERF_FILES_NOCACHE_WB_V10.TXT
WASD_ROOT:[EXERCISE]PERF_FILES_WB_V10.TXT

11.2 Scripting
A simple performance evaluation shows the relative merits of the four WASD scripting
environments available, plus a comparison with OSU and Apache.
WASD_ROOT:[SRC.CGIPLUS]CGIPLUSTEST.C, which executes in both standard CGI and
CGIplus environments, and an ISAPI example DLL, WASD_ROOT:[SRC.CGIPLUS]ISAPIEXAMPLE.C,
which provides equivalent output. A series of accesses were made. The first test returned
only the HTTP header, evaluating raw request turn-around time. The second test requested
a body of 64K characters, again testing performance with a more realistic load.

The CGIPLUSTEST.C with the v10 package has be reworked (primarily by using CGILIB) to
provide a more equitable comparison by using CGI with WASD and Apache, and the native
dialog phase (i.e. non-CGI) with OSU.

11–4 Server Performance

DECnet-based WASD scripting was tested using essentially the same environment as de-
tached process based CGI, assessing the performance of the same script being executed using
DECnet to manage the processes. The OSU-emulation provided by WASD was also (somewhat
obviously) provided using DECnet.

Concurrency 1 - Requests/Second

Response CGI CGIplus ISAPI DECnet
WASD-
OSU OSU Apache

Apache-
OSU

0KB 47 714 557 32 46 48 3.9 4.0

64KB 58 418 263 31 39 38 3.0 1.7

Concurrency 10 - Requests/Second

Response CGI CGIplus ISAPI DECnet
WASD-
OSU OSU Apache

Apache-
OSU

0KB 62 979 785 47 60 55 5.5 4.2

64KB 60 377 228 42 61 53 4.4 4.7

Result file:

WASD_ROOT:[EXERCISE]PERF_SCRIPTS_WB_V10.TXT

Although these results are indicative only, they do show the persistent environment of
CGIplus and ISAPI to have a potential for improvement over standard CGI with factors
of 5x to 10x - a not inconsiderable improvement. Of course this test generates the output
stream very simply and efficiently and so excludes any actual processing time that may be
required by a ‘‘real’’ application. If the script or application has a large activation time the
reduction in response latency could be even more significant (e.g. with scripting engines such
as Perl, PHP and Python, and RDMS access languages); see Persistent Scripting Observations
immediately below.

Persistent Scripting Observations

CGI scripting is notoriously slow (as illustrated above), hence the effort expended by designers
in creating persistent scripting environments - those where the scripting engine (and perhaps
other state) is maintained between requests. Both WASD and Apache implement these as
integrated modules, the former as CGIplus/RTE, and in the latter as loadable modules.

The following comparison uses two of the most common scripting environments and engines
shared between WASD and Apache, Perl and PHP. The engines used in both server environ-
ments were identical. No comparison is made with OSU (in part due to the lack of obvious
integration of such environments with OSU).

Server Performance 11–5

A simple script for each engine is used as a common test-bench for the two servers.

<!-- face2face.php -->
<?php
echo "Hello!"
?>

face2face.pl
print "Content-Type: text/html\n\n
Hello!
";

These are designed to measure the script environment and its activation latencies, rather
than the time required to process script content (which should be consistent considering they
are the same engines). In addition, the standard php_info.php is used to demonstrate with a
script that actually performs some processing.

Persistent Scripting - Requests/Second

Concurrent WASD Apache

face2face.pl 1 169 6.9

face2face.pl 10 229 9.5

face2face.php 1 82 16

face2face.php 10 203 21

php_info.php 1 33 18

php_info.php 10 135 18

Result file:

WASD_ROOT:[EXERCISE]PERF_PERSIST_WB_V10.TXT

These results demonstrate the efficiency and scalability of the WASD CGIplus/RTE technology
used to implement its persistent scripting environments. Most site-specific scripts can also
be built using the libraries, code fragments, and example scripts provided with the WASD
package, and obtain similar efficiencies and low latencies. See ‘‘WASD Web Services -
Scripting’’ document.

11.3 SSL
At this time there are no definitive measurements of SSL performance (Chapter 4). One
might expect that because of the CPU-intensive cryptography employed in SSL requests that
performance, particularly where concurrent requests are in progress, would be significantly
lower. In practice SSL seems to provide more-than-acceptable responsiveness.

11–6 Server Performance

11.4 Suggestions
Here are some suggestions for improving the performance of the server, listed in approximate
order of significance. Many are defaults. Note that these will have proportionally less impact
on an otherwise heavily loaded system.

1. Disable host name resolution (configuration parameter [DNSLookup]). DNS latency
can slow request processing significantly! Most log analysis tools can convert literal
addresses so DNS resolution is often an unnecessary burden.

2. Later versions of TCP/IP Services for OpenVMS seem to have large default values for
socket send and receive buffers. MultiNet and TCPware are reported to improve transfer
of large responses by increasing low default values for send buffer size. The WASD global
configuration directives [SocketSizeRcvBuf] and [SocketSizeSndBuf] allow default values
to be adjusted. WATCH can be used to report network connection buffer values.

3. Enable file caching (configuration parameter [Cache]).

4. Ensure served files are not VARIABLE record format (see above). Enable STREAM-LF
conversion using a value such as 250 (configuration parameter [StreamLF], and SET
against required paths using mapping rules).

5. Use persistant DCL/scripting processes (configuration parameter [ZombieLifeTime])

6. Ensure script processes are given every possible chance to persist (configuration param-
eter [DclBitBucketTimeout]).

7. Use the persistent scripting capabilities of CGIplus or ISAPI whenever possible.

8. Ensure the server account’s WSQUO and WSEXTENT quotas are adequate. A constantly
paging server is a slow server!

9. If the server is intended to provide significant numbers of larger files (e.g. multimedia)
then setting [BufferSizeNetFile] can improve data rates. Experiments should determine
the maximum value (30000 - 60000) that provides the best server data rate.

10. Tune the network and DCL output buffer size to the Maximum Transfer Unit (MTU) of
the server’s network interface. Using Digital TCP/IP Services (a.k.a. UCX) display the
MTU.

TCPIP> SHOW INTERFACE
Packets

Interface IP_Addr Network mask Receive Send MTU

SE0 203.127.158.3 255.255.255.0 376960 704345 1500
LO0 127.0.0.1 255.0.0.0 306 306 0

In this example the MTU of the ethernet interface is 1500 (bytes). Set the [Buffer-
SizeNetWrite] configuration directive to be some multiple of this. In the case of 1500, say
3000, 4500 or 6000. Also set the [BufferSizeDclOutput] to the same value. Rationale:
always use completely filled network packets when transmitting data.

The [BufferSizeNetMTU] directive when set to the MTU will automatically optimise buffer
sizes using this approach.

11. Disable logging (configuration parameter [Logging]).

Server Performance 11–7

12. Set the HTTP server process priority higher, say to 6 (use startup qualifier /PRIORITY=).
Do this after due consideration. It will only improve response time if the system is also
used for other, lower priority purposes. It will not help if Web-serving is the sole acitivity
of the system.

13. Use a pre-defined log format (e.g. ‘‘common’’, configuration parameter [LogFormat]). User-
specified formats require more processing for each entry.

14. Disable request history (configuration parameter [RequestHistory]).

15. Disable activity statistics (configuration parameter [ActivityDays]).

11–8 Server Performance

Chapter 12

HTTPd Web Update

The Update facility allows Web documents and file environments to be administered from
a standard browser. This capability is available to Web administrator and user alike.
Availability and capability depends on the authorization environment within the server.

It should be stressed that this is not designed as a full hypertext administration or author-
ing tool, and for document preparation relies on the editing capabilities of the <TEXTAREA>
widget of the user’s browser. It does however, allow ad-hoc changes to be made to docu-
ments fairly easily, as well as allowing documents to be deleted, and directories to be created
and deleted.

Consult the current Update documentation for usage detail.

online hypertext link

online graphic

online graphic

Update Access Permission

If SSL is in use (see ‘‘WASD Web Services - Install and Config’’) then username/password
privacy of the authorization environment is inherently secured via the encrypted communi-
cations. To restrict web update functionality to this secure environment add the following to
the WASD_CONFIG_MAP configuration file:

/upd/* "403 Access denied." ![sc:https]

Of course, the user must have write (POST/PUT) access to the document or area on the
server (i.e. the path) and the server account have file system permission to write into the
parent directory.

The server will report ‘‘Insufficient privilege or object protection violation ... /path/document’’
if it does not have file system permission to write into a directory.

Also see Section 3.13 for information on write access control for the server account.

HTTPd Web Update 12–1

Chapter 13

Utilities and Facilities

Foreign commands for external utilities (and the HTTPD control functionality) will need to
be assigned from the adminstration users’ LOGIN.COM either explicitly or by calling the
WASD_ROOT:[EXAMPLE]WASDVERBS.COM procedure.

$ AB == "$WASD_EXE:AB"
$ HTTPD == "$WASD_EXE:HTTPD"
$ HTTPDMON == "$WASD_EXE:HTTPDMON"
$ MD5DIGEST == "$WASD_EXE:MD5DIGEST"
$ QDLOGSTATS == "$WASD_EXE:QDLOGSTATS"
$ SECHAN == "$WASD_EXE:SECHAN"
$ STREAMLF == "@WASD_EXE:STREAMLF"
$ WB == "$WASD_EXE:WB"

13.1 Echo Facility
Ever had to go to extraordinary lengths to find out exactly what your browser is sending to
the server? The server provides a request echo facility. This merely returns the complete
request as a plain-text document. This can be used for for checking the request header lines
being provided by the browser, and can be valuable in the diagnosis of POSTed forms, etc.

This facility must be enabled through a mapping rule entry.

script /echo/* /echo/*

It may then be used with any request merely by inserting ‘‘/echo’’ at the start of the path, as
in the following example.

http://www.example.com/echo/wasd_root/

Utilities and Facilities 13–1

13.2 Hiss Facility
The hiss facility provides a response stream made up of random alpha-numeric characters
(a sort of alpha-numeric white-noise). No response header is generated and the stream will
continue (by default) up to one megabyte of output, or until the client closes the connection.
This maximum may be controlled my appending an integer representing the number of
kilobytes maximum to the mapping. This facility must be enabled through a mapping rule
entry and may then be used for specific requests.

map /**.dll* /hiss/64/*.dll*
map /**/system32/* /hiss/64/*/system32/*
map /**default.ida* /hiss/64/*default.ida*
script /hiss/* /hiss/*

Usage details are described in ‘‘WASD Web Services - Install and Config’’ .

13.3 Stream Facility
The stream facility provides a quantified or unlimited response stream of printable or binary
octets. It is intended as a light-weight data source delivering content at the maximum
throughput capable by the server and platform. This can be used as a test source or for
end-to-end metrics. This facility must be enabled through a mapping rule.

script /stream/* /stream/*

It may then be used to generate streams of data with various characteristics and sizes by
including parameters in the URL.

• Without parameters it produces a text/plain response header with unlimited stream of
random 8 bit printable and newline characters. The stream ceases at client disconnection.

http://www.example.com/stream/

• With an integer parameter the stream ceases when the response has delivered that many
kilobytes (1024) of characters.

http://www.example.com/stream/50/

• A 100 kilobyte stream of repeated 80 column, newline terminated characters in the range
‘‘+’’ (0x2b) to ‘‘z’’ (ox7a). Intended to provide an entirely predictable sequence for testing
purposes.

http://www.example.com/stream/text:100/

• The following produces an application/binary response header with unlimited stream of
random octets.

http://www.example.com/stream/binary/

• One megabyte of random octets.

http://www.example.com/stream/binary:1024/

• An unlimited stream of octets cycling from 0x00 to 0xff. Intended to provide an entirely
predictable sequence for testing purposes.

http://www.example.com/stream/octets/

13–2 Utilities and Facilities

13.4 Where Facility
Need to locate where VMS has the HTTPd files? This simple facility maps the supplied path
then parses it to obtain a resulting VMS file specification. This does not demonstrate
whether the path actually exists!

This facility must be enabled through a mapping rule entry.

script /where/* /where/*

It may then be used with any request merely by inserting ‘‘/where’’ at the start of the path,
as in the following example.

http://www.example.com/where/wasd_root/

13.5 Xray Facility
The Xray facility returns a request’s complete response, both header and body, as a plain
text document. Being able to see the internals of the response header as well as the contents
of the body rendered in plain text can often be valuable when developing scripts, etc.

This facility must be enabled through a mapping rule entry.

script /Xray/* /Xray/*

It may then be used with any request merely by inserting ‘‘/xray’’ at the start of the path, as
in the following example.

http://www.example.com/xray/wasd_root/

13.6 ApacheBench
This server stress-test and benchmarking tool, as used in the Apache Distribution, is
included with the WASD package (sourced from http://webperf.zeus.co.uk/ab.c), within license
conditions.

Copyright (c) 1996 Adam Twiss, Zeus Technology Ltd.
Copyright (c) 1998 The Apache Group.

ApacheBench will only compile and run for Alpha, Itanium or VAX systems with
VMS 7.n or greater available. Also see the WASD analogue, Section 13.14. ApacheBench
is a simple but effective tool, allowing a single resource to be requested from a server a
specified number of times and with a specified concurrency. This can be used to benchmark a
server or servers, or be used to stress-test a server configuration’s handling of variable loads
of specific resquests (before exhausting process quotas, etc.) This utility has remained at the
1.3 release due to subsequent versions (e.g. 2.0) having Apache API dependencies.

A small addition to functionality has been made. The WASD ApacheBench displays a count
of the HTTP response categories received (i.e. the number of 2nns, 4nns, etc.) This allows
easier assessment of the relevance of results (i.e. measuring performance of some aspect only
to find the results showed the performance of 404 message generation - and yes, an annoying
experience of the author’s prompted the changes!)

Utilities and Facilities 13–3

The following examples illustrate its use.

$ AB -H
$ AB -C 10 -N 100 http://the.server.name/wasd_root/exercise/0k.txt
$ AB -C 50 -N 500 -K http://the.server.name/wasd_root/exercise/64k.txt
$ AB -C 10 -N 100 http://the.server.name/cgi-bin/cgi_symbols

13.7 CALogs
The Consolidate Access LOGS utility (pronounced similar to the breakfast cereal brand :-)
merges multiple HTTP server common and combined format access logs into a single log file
with records in time-order. Due to the granularity of HTTP server entry timestamps (one
second) the records are sorted to the one second but not within the one second.

It uses RMS and the VMS sort-merge routines to provide the basic consolidation functionality.
An RMS search uses the supplied wildcard log file specification. Matching files are opened and
each record read. The date/time field is parsed and a binary timestamp generated. Records
with formats or date/time fields that do not make sense to the utility are discarded. When all
files have been processed the sort-merge is performed using the timestamp as the key. The
sorted records are then written to the specified output file.

$ calogs <log-file-spec> [<output-file-name>] [<qualifiers>]

Parameters and Qualifiers

Parameter Description

/HELP basic usage information

/NOPROXY discard proxy service records

/NOWASD discard WASD server status/timestamp entries

/OUTPUT= alternate method of specifying merged file name

/PROXY discard non-proxy service records

/QUIET no messages apart from errors

/VERBOSE per-file progress messages

/VERSION display the utility version and copyright message

Usage Examples
$ CALOGS == "$WASD_EXE:CALOGS"
$ CALOGS WASD_LOGS:*200205*.LOG 2002_MAY.LOG
$ CALOGS /VERBOSE WASD_LOGS:
$ CALOGS /NOWASD WASD_LOGS:*200206*.LOG_* /OUTPUT=2002_JUNE.LOG
$ CALOGS /PROXY /NOWASD WASD_LOGS:*2002*.LOG 2002_PROXY.LOG

13–4 Utilities and Facilities

13.8 HTAdmin
The HTAdmin utility assists in with the command-line maintenance of $HTA authorization
databases. See ‘‘WASD Web Services - Install and Config’’ document, ‘‘Authorization Config-
uration’’ section, and Chapter 3.

$ htadmin <database> [<username>] [<qualifiers>]

Parameters and Qualifiers

Parameter Description

/ADD add a new record

/CONFIRM confirm deletion of database

/CONTACT="<string>"contact information for record

/CREATE create a new database

/CSV[=TAB | char] comma-separated listing (optional character)

/DATABASE= database name (or as command-line parameter)

/DELETE delete a database or username record from a database

/DISABLED username record is disabled (cannot be used)

/EMAIL="<string>"email address for record

/ENABLED username record is enabled (can be used)

/FULL listing showing full details

/GENERATE generate a six character password

/HELP basic usage information

/[NO]HTTPS synonym for /SSL

/LIST listing (brief by default, see /FULL and /CSV)

/MODIFY synonym for /UPDATE

/NAME="<string>" full name for username record

/OUTPUT= alternate output for database listing

/PASSWORD[=<string>]username record password (prompts if not supplied)

/PIN generate four-digit "PIN number" for password

/[NO]READ username can/can’t read

/SORT[=<parameters>]sort the records into a new/another database

/[NO]SSL user can only authenticate via SSL (‘‘https:’’)

/[NO]WRITE username can/can’t write

Utilities and Facilities 13–5

Parameter Description

/UPDATE update an existing username record

/USER=<string> username

/VERSION display version of HTADMIN

Usage Examples

• To create a new database named EXAMPLE.$HTA (in the current directory)

$ HTADMIN EXAMPLE /CREATE

• Delete an existing database

$ HTADMIN EXAMPLE /DELETE /CONFIRM

• List (briefly) the records

$ HTADMIN EXAMPLE

• List (briefly) the specific user record DANIEL

$ HTADMIN EXAMPLE DANIEL

• List all detail (132 colums) of the specified user record

$ HTADMIN EXAMPLE DANIEL /FULL

• To add the new record DANIEL with default read access

$ HTADMIN EXAMPLE DANIEL /ADD /NAME="Mark Daniel"

• Add the new record DANIEL with contact details and read+write access

$ HTADMIN EXAMPLE DANIEL /ADD /WRITE /CONTACT="Postal Address"

• Add the new record DANIEL and be prompted for a password, or to specify the password
on the command-line, or have the utility generate a password or four-digit PIN style
password (which is displayed after the record is sucessfully added)

$ HTADMIN EXAMPLE DANIEL /ADD /NAME="Mark Daniel" /PASSWORD
$ HTADMIN EXAMPLE DANIEL /ADD /NAME="Mark Daniel" /PASSWORD=cher10s
$ HTADMIN EXAMPLE DANIEL /ADD /NAME="Mark Daniel" /GENERATE
$ HTADMIN EXAMPLE DANIEL /ADD /NAME="Mark Daniel" /PIN

• To update an existing record

$ HTADMIN EXAMPLE DANIEL /UPDATE /EMAIL="Mark.Daniel@wasd.vsm.com.au"

• Update the specified record’s password (interactively) then to generate a four digit PIN
for a password (which is then displayed)

$ HTADMIN EXAMPLE DANIEL /UPDATE /PASSWORD
$ HTADMIN EXAMPLE DANIEL /UPDATE /GENERATE
$ HTADMIN EXAMPLE DANIEL /UPDATE /PIN

13–6 Utilities and Facilities

• Disable then enable an existing user record without changing anything else

$ HTADMIN EXAMPLE DANIEL /UPDATE /DISABLE
$ HTADMIN EXAMPLE DANIEL /UPDATE /ENABLE

• To list the entire database, first briefly, then in 132 column mode (with all detail), then
finally as a comma-separated listing

$ HTADMIN EXAMPLE
$ HTADMIN EXAMPLE /FULL
$ HTADMIN EXAMPLE /CSV

Sort Details

The /SORT qualifier sorts the current database records according to the /SORT= parameters.
It can be used with the /LIST qualifier to produce ordered reports or will output the records
into another authentication file. By default it sorts ascending by username. Qualifier
parameters allow a sort by DATE or COUNT. Each of these allows the further specification
of which date or count; ACCESS, CHANGE or FAILURE.

• Generating a listing with specified order

$ HTADMIN EXAMPLE /LIST /SORT=DATE=ACCESS
$ HTADMIN EXAMPLE /LIST /SORT=COUNT=FAILURE /OUTPUT=EXAMPLE.LIS

• Sort descending by username into a higher version of EXAMPLE.$HTA

$ HTADMIN EXAMPLE /SORT

• To sort by username into another .$HTA file

$ HTADMIN EXAMPLE /SORT /OUTPUT=ANOTHER

• List by most-recently accessed

$ HTADMIN EXAMPLE /LIST /SORT=DATE

• List by most-recently failed to authenticate

$ HTADMIN EXAMPLE /LIST /SORT=DATE=FAILURE

• Sort file into order by most frequently authenticated (accessed)

$ HTADMIN EXAMPLE /SORT=COUNT

13.9 HTTPd Monitor
The HTTP server may be monitored in real-time using the HTTPDMON utility.

online graphic

This utility continuously displays a screen of information comprising three or four of the
following sections:

1. Process Information
HTTPd process information includes its up-time, CPU-time consumed (excluding any
subprocesses), I/O counts, and memory utilization. The ‘‘Servers:’’ item shows how many
servers are currently running on the node/cluster. Changes in this count are indicated by
the second, parenthesized number.

Utilities and Facilities 13–7

2. General Server Counters
The server counters keep track of the total connections received, accepted, rejected, etc.,
totals for each request type (file transfer, directory listing, image mapping, etc.).

3. Proxy Serving Counters
The server counters keep track of proxy serving connections, network and cache traffic,
cache status, etc.

4. Latest Request
This section provides the response status code, and some transaction statistics, the service
being accessed, originating host and HTTP request. Note that long request strings may
be truncated (indicated by a bolded ellipsis).

5. Status Message
If the server is in an exceptional condition, for example exited after a fatal error, starting
up, etc., a textual message may be displayed in place of the the request information. This
may be used to initiate remedial actions, etc.

The following shows example output:

13–8 Utilities and Facilities

I64:: HTTPDMON v2.4.0 IA64 Tuesday, 17-NOV-2009 23:57:25

Process: WASD:80 PID: 24400436 User: HTTP$SERVER Version: 10.0.0
Up: 1 05:23:30.67 CPU: 0 00:00:02.05 Startup: 2 Exit: %X00000001

Pg.Flts: 2269 Pg.Used: 8% WsSize: 36640 WsPeak: 16864
AST: 1996/2000 BIO: 1998/2000 BYT: 1992640/1992640 DIO: 1000/1000
ENQ: 477/500 FIL: 296/300 PRC: 100/100 TQ: 98/100

Request: 107 Current: 0/0 Throttle: 0/0/0% Peak: 4/2
Accept: 44 Reject: 0 Busy: 0 SSL: 35/80%
CONNECT: 0 GET: 107 HEAD: 0 POST: 0 PUT: 0 (0)
Admin: 80 Cache: 9/0/0 DECnet: 0/0 Dir: 1
DCL: CGI:1 CGIplus:1/0 RTE:0/0 Prc:2/0
File: 16/6 Proxy: 0 Put: 0 SSI: 0 WebDAV: 0/0

0xx: 0 2xx: 93 3xx: 6 4xx: 7 (403:1) 5xx: 0
Rx: 67,162 (6 err) Tx: 939,153 (0 err) (3.9kB/S)

Time: 17 23:56:52 Status: 200 Rx: 835 Tx: 14,762 Dur: 0.459 (34.0kB/S)
Service: https://i64.kednos.com:443

Host: clive.vsm.com.au (150.101.13.12)
Request: GET /httpd/-/admin/ (********.***)

The ‘‘/HELP’’ qualifier provides a brief usage summary.

The server counter values are carried over when a server (re)starts (provided the system has
stayed up). To reset the counters use the online Server Administration facility (Chapter 9).

If [DNSlookup] is disabled for the HTTP server the HTTPDMON utility attempts to resolve
the literal address into a host name. This may be disabled using the /NORESOLVE qualifier.

13.10 MD5digest
From RFC1321 . . .

‘‘ The [MD5] algorithm takes as input a message of arbitrary length and produces as
output a 128-bit "fingerprint" or "message digest" of the input. It is conjectured that it is
computationally infeasible to produce two messages having the same message digest, or to
produce any message having a given prespecified target message digest. ’’

The MD5DIGEST utility is primarily provided with WASD for verifying kits as unchanged
from the originals released. With the proliferation of mirror sites and other distribution
resources it has become good practice to ensure kits remain unchanged from release, to
distribution, to installation site (changes due to to data corruption or malicious intent - as
remote a possibility as that may seem). Of course it may also be used for any other purpose
where the MD5 hash is useful.

For verifying the contents of a WASD release connect to the original WASD distribution site,
refer to the download page, and make a comparison between the release MD5 hash found
against the list of all archive hashes and the MD5 hash of your archive. That can be done as
follows

$ MD5DIGEST == "$WASD_EXE:MD5DIGEST"
$ MD5DIGEST device:[dir]archive.ZIP

The result will look similar to

MD5 (kits:[000000]htroot710.zip;1) = 404bbdfe0f847c597b034feef2d13d2d

Utilities and Facilities 13–9

Of course, if you have not yet installed your first WASD distribution using the MD5DIGEST
utility that is part of it is not feasable. The original site can provide kits and pre-built
executables for this purpose.

13.11 QDLogStats
Quick-and-Dirty LOG STATisticS is a utility to extract very elementary statistics from Web
server common/combined format log files. It is intended for those moments when we think
‘‘I wonder how many times that new archive has been downloaded?’’, ‘‘How much data was
transfered during November?’’, ‘‘How often is such-and-such a client using the authenticated
so-and-so service?’’, ‘‘How much has the mail service been used?’’ . . . and want the results in
a matter of seconds (or at least a few tens of seconds ;-) It is available at the command-line
and as a CGI script.

online graphic

For QDLOGSTATS to be available as a CGI script it must have authorization enabled against
it (to prevent potential ad hoc browsing of a site’s logs). The following provides some indication
of this configuration, although of course it requires tailoring for any given site.

[VMS]
/cgi-bin/qdlogstats ~webadmin,131.185.250.*,r+w ;

It could then be accessed using

http://the.host.name/cgi-bin/qdlogstats

The initial access provides a form allowing the various filters and other behaviours to be
selected. The CGI form basically parallels the command-line behaviour described below.

Filters

A number of filters allow subsets of the log contents to be selected. These filters support
the same string matching expressions as the server (see ‘‘WASD Web Services - Install and
Config’’).

A knowlege of the format and contents of the common and combined log formats will assist
in deciding which and to what purpose filters should be used. Record filtering is done in
the same order as is finally displayed, so method would be processed before user-agent for
instance. Normally a record match terminates on the first non-matched filter (to expedite
processing). To compare and report each filter for every record apply the /ALL qualifier. To
view records as they are processed use the /VIEW qualifier. This by default displays all
matched records, but the optional =ALL or =NOMATCH parameters will display all records,
or all those but the matches.

$ QDLOGSTATS log-file-spec [pattern qualifiers] [other qualifiers]

Parameters and Qualifiers

13–10 Utilities and Facilities

Parameter Description

/ALL compare and report on all supplied filters

/AUTHUSER= pattern (any authenticated username)

/BEFORE= log files before this VMS date/time

/CLIENT= pattern (client host name or IP address)

/DATETIME= pattern (‘‘11/Jun/1999:14:08:49 +0930’’)

/DECODE[=keyword]URL-decode PATH, QUERY, REFERER before match

/METHOD= pattern (HTTP ‘‘GET’’, ‘‘POST’’, etc.)

/OUTPUT= file specification

/PATH= pattern (URL path component only)

/PROGRESS show progress during processing; a ‘‘+’’ for each file started, a ‘‘.’’ for each 1000
records processed

/QUERY= pattern (URL query component only)

/REFERER= pattern (HTTP ‘‘Referer:’’ field, COMBINED only)

/REMOTEID= pattern (RFC819 file)

/RESPONSE= pattern (HTTP response code)

/SINCE= log files after this VMS date/time

/SIZE[=keyword] response size (in bytes) MIN=integer MAX=integer

/USERAGENT= pattern (HTTP ‘‘User-Agent:’’ field, COMBINED only)

/VIEW[=type] display matching log records (ALL, NOMATCH, MATCH)

Usage Examples

• Records from September 1999.

$ QDLOGSTATS WASD_LOGS:*1999*.LOG /DATE="*/SEP/1999*"

• Records where the browser was an X-based Netscape Navigator

$ QDLOGSTATS WASD_LOGS:*.LOG /USERAGENT=*MOZILLA*X11*

• Records of POST method requests

$ QDLOGSTATS WASD_LOGS:*.LOG /METHOD=POST

• Records requesting a particular path

$ QDLOGSTATS WASD_LOGS:*.LOG /PATH="/cgi-bin/*"

• Select proxy records requesting (a) particular site(s)

$ QDLOGSTATS WASD_LOGS:*8080*.LOG /PATH="http://*.compaq.com*"
$ QDLOGSTATS WASD_LOGS:*8080*.LOG /METHOD=POST /PATH="http://*sex*.*/*" /VIEW

Utilities and Facilities 13–11

• Records where the request was authenticated

$ QDLOGSTATS WASD_LOGS:*.LOG /AUTHUSER=DANIEL

13.12 SECHAN Utility
The SECHAN utility (pronounced ‘‘session’’) is used by [INSTALL]SECURE.COM and asso-
ciated procedures to make file system security settings. It is also available for direct use by
the site administrator. See ‘‘WASD Web Services - Install and Config’’ .

13.13 StreamLF Utility
This simple procedure used the FDL facility to convert files to STREAM_LF format. The
WASD HTTPd server access STREAM_LF files in block/IO-mode, far more efficiently that the
record-mode required by variable-record format files.

NOTE: The server can also be configured to automatically convert any VARIABLE record
format files it encounters to STREAM_LF.

13.14 WASDbench :^)
WASDbench - an analogue to ApacheBench (Section 13.6) Why have it? ApacheBench only
compiles and runs on VMS 7.n and later. This version should compile and run for all supported
WASD configurations. It also has the significant performance advantage (looks like ~25%) of
using the underlying $QIO services and not the socket API, and is AST event driven rather
than using the likes of select(). It is not a full implementation of AB (for instance, it currently
does not do POSTs). The CLI attempts to allow the same syntax as used by AB (within the
constraint that not all options are supported) so that it is relatively easy to switch between
the two (perhaps for comparison purposes) if desired.

The following examples illustrate its use.

$ WB -H
$ WB -C 10 -N 100 http://the.server.name/wasd_root/exercise/0k.txt
$ WB -C 50 -N 500 -K http://the.server.name/wasd_root/exercise/64k.txt
$ WB -C 10 -N 100 http://the.server.name/cgi-bin/cgi_symbols

WASDbench also has an exercise option, functionality is not found in ApacheBench. It
is basically to supercede similar functionality provided by the retired WWWRKOUT. The
exercise functionality allows WASDbench to be used to stress-test a server. This behaviour
includes mixing HEAD (~5%) with GET requests, and breaking requests during both request
and response transfers (~5%). These are designed to shake up the server with indeterminate
request types and client error behaviours. The best way to utilize this stress-testing is wrap
WASDbench with a DCL procedure providing a variety of different requests types, quantities
and concurrencies.

13–12 Utilities and Facilities

$!(example "wrapper" procedure)
$ IF P1 .EQS. "" THEN P1 = F$GETSYI("NODENAME")
$ WB = "$WASD_EXE:WB"
$ SPAWN/NOWAIT WB +e +s +n -n 100 -c 5 http://’p1’/wasd_root/exercise/0k.txt
$ SPAWN/NOWAIT WB +e +s -k -n 50 -c 5 -k http://’p1’/wasd_root/exercise/64k.txt
$ SPAWN/NOWAIT WB +e +s -n 50 -c 2 http://’p1’/cgi-bin/conan
$!(delay spawning anymore until this one concludes)
$ WB +e +s -n 100 -c 5 http://’p1’/wasd_root/*.*
$ SPAWN/NOWAIT WB +e +s +n -n 100 -c 1 http://’p1’/wasd_root/exercise/16k.txt
$ SPAWN/NOWAIT WB +e +s -n 10 -c 1 http://’p1’/cgi-bin/doesnt-exist
$ SPAWN/NOWAIT WB +e +s -k -n 50 -c 2 http://’p1’/cgi-bin/conan/search
$!(delay spawning anymore until this one concludes)
$ WB +e +s -n 50 -c 2 http://’p1’/wasd_root/src/httpd/*.*
$!(etc.)

13.15 WOTSUP Utility
The ‘‘WASD Over-The-Shoulder Uptime Picket’’ is designed to monitor WASD in a production
environment for the purpose of alerting operations staff to conditions which might cause that
production to be adversely impacted.

Alert triggers include:

• server image exit and/or startup (default)

• server process non-existent or suspended (default)

• percentage thresholds on process quotas (optional)

• rates of HTTP status counter change (optional)

• maximum period without request processing (optional)

Alert reports can be delivered via any combination of:

• OPCOM message

• MAIL

• site-specific DCL command executed in a spawned subprocess

• log file entry

The utility runs in a detached process and monitors the server environment by periodically
polling various server data at a default interval is 15 seconds. As the utility requires access to
global memory accounting a per-system WOTSUP is required for each node to be monitored.

The following (somewhat contrived) example illustrates the format and content of a WOTSUP
report delivered via OPCOM. Reports delivered via other mechanisms have the same content
and similar format.

%%%%%%%%%% WOTSUP 24-OCT-2006 13:32:56.44 %%%%%%%%%%%
Message from user SYSTEM on KLAATU
Over-The-Shoulder (WASD_WOTSUP) reports:
1. server PID 001C0950 exit %X00000001 (%SYSTEM-S-NORMAL)
2. server STARTUP (10)
3. server PIDs are 0018C14F (HTTPd:80), 001C0950 (HTTPe:80)
4. pagfilcnt:395432 pgflquota:500000 79% <= 80%

Utilities and Facilities 13–13

For further infomation check the descriptive prologue in the WASD_ROOT:[SRC.UTILS]WOTSUP.C
source code.

13–14 Utilities and Facilities

