
WASD VMS Web Services
- Install and Config

November 2018

For version 11.3 release of WASD VMS Web Services.

Abstract

This document introduces the WASD Web Services package and provides detailed installation,
update and configuration instructions.

For configuration and use of other significant WASD capabilities see ‘‘WASD Web Services -
Features and Facilities’’

For information on CGI, CGIplus, ISAPI, OSU, etc., scripting, see ‘‘WASD Web Services -
Scripting’’

And for a description of WASD Web document, SSI and directory listing behaviours and options,
‘‘WASD Web Services - Environment’’

It is strongly suggested those using printed versions of this document also access the HTML
version. It provides online access to examples, etc.

Author

Mark G. Daniel

Mark.Daniel@wasd.vsm.com.au

A pox on the houses of all spammers. Make that two poxes.

Online Search
online search

Online PDF

This book is available in PDF for access and subsequent printing by suitable viewers (e.g.
Ghostscript) from the location WASD_ROOT:[DOC.CONFIG]CONFIG.PDF

Online Demonstrations

Some of the online demonstrations may not work due to the local organisation of the Web
environment differing from WASD where it was originally written.

ii

WASD VMS Web Services

Copyright © 1996-2018 Mark G. Daniel.

This package is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; version 3 of the License,
or any later version.

This package is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

WASD_ROOT:[000000]GNU_GENERAL_PUBLIC_LICENSE.TXT

http://www.gnu.org/licenses/gpl.txt

You should have received a copy of the GNU General Public License along with this package; if
not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

The Apache Group

This product includes software developed by the Apache Group for use in the Apache HTTP
server project (http://www.apache.org/).

Redistribution and use in source and binary forms, with or without
modification, are permitted ...

Clark Cooper, et.al.

This package uses the Expat XML parsing toolkit.

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006 Expat maintainers.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

Bjoern Hoehrmann

This package uses essential algorithm and code from Flexible and Economical UTF-8 Decoder.

iii

Copyright (c) 2008-2009 Bjoern Hoehrmann <bjoern@hoehrmann.de>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

Free Software Foundation

This package contains software made available by the Free Software Foundation under the GNU
General Public License.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

Ohio State University

This package contains software provided with the OSU (DECthreads) HTTP server package,
authored by David Jones:

Copyright 1994,1997 The Ohio State University.
The Ohio State University will not assert copyright with respect
to reproduction, distribution, performance and/or modification
of this program by any person or entity that ensures that all
copies made, controlled or distributed by or for him or it bear
appropriate acknowlegement of the developers of this program.

OpenSSL Project

This product can include software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/).

Redistribution and use in source and binary forms, with or without
modification, are permitted ...

Paul E. Jones

This package uses SHA-1 hash code.

Copyright (C) 1998, 2009
Paul E. Jones <paulej@packetizer.com>

Freeware Public License (FPL)

This software is licensed as "freeware." Permission to distribute
this software in source and binary forms, including incorporation
into other products, is hereby granted without a fee.

iv

RSA Data Security

This software contains code derived in part from RSA Data Security, Inc:

permission granted to make and use derivative works provided that such
works are identified as "derived from the RSA Data Security, Inc.
MD5 Message-Digest Algorithm" in all material mentioning or referencing
the derived work.

Stuart Langridge

SortTable version 2
Stuart Langridge, http://www.kryogenix.org/code/browser/sorttable/

Thanks to many, many people for contributions and suggestions.
Licenced as X11: http://www.kryogenix.org/code/browser/licence.html
This basically means: do what you want with it.

Tatsuhiro Tsujikawa

nghttp2 - HTTP/2 C Library
Tatsuhiro Tsujikawa, https://github.com/tatsuhiro-t

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

VSI OpenVMS is a registered trademark of VMS Software Inc.

OpenVMS , HP TCP/IP Services for OpenVMS , HP C, Alpha , Itanium and VAX
are registered trademarks of Hewlett Packard Corporation

MultiNet and TCPware are registered trademarks of Process Software Corporation

Ghostscript is Copyright (C) Artifex Software, Inc.

v

Contents

Chapter 1 New to WASD? Start Here!

Chapter 2 Installation and Update

2.1 Package UNZIP . 2–2

2.2 ODS-5 Volumes . 2–4

2.3 Accessible Volume . 2–4

2.4 Package Directory Structure . 2–4

2.5 TCP/IP Infrastructure . 2–5

2.6 SYSUAF and RIGHTSLIST WARNING! . 2–5

2.7 Installation DCL Procedure . 2–6

2.8 Update DCL Procedure . 2–6

2.9 %LINK-I-UDFSYM . 2–7

2.10 Quick-Check . 2–8

2.11 ‘‘Clone’’ Procedure . 2–9

2.12 Re-Linking . 2–9

2.13 Multiple Installations . 2–10

2.14 VMS 6.n . 2–11

2.15 VMS 5.5-n . 2–11

2.16 Local Setup Suggestions . 2–11

2.17 Reporting Problems . 2–11

Chapter 3 Server Account and Environment

3.1 VMS Server Account . 3–2

3.2 VMS Scripting Account . 3–2

3.3 Account Support Files . 3–3

3.4 Global Pages/Sections . 3–5

3.5 Logical Names . 3–6

iii

3.5.1 WASD Name Table . 3–9

3.5.2 Pre-v10 . 3–11

3.6 Server Startup . 3–11

Chapter 4 Configuration Considerations

4.1 Include File Directive . 4–2

4.2 Site Organisation . 4–3

4.3 Virtual Services . 4–5

4.3.1 [[virtual-server]] . 4–6

4.3.2 Unknown Virtual Server . 4–7

4.4 GZIP Encoding . 4–7

4.4.1 Response Encoding . 4–8

4.4.2 Request Encoding . 4–9

4.5 Request Throttling . 4–9

4.6 Client Concurrency . 4–12

4.7 Content-Type Configuration . 4–13

4.7.1 Adding Content-Types . 4–13

4.7.2 MIME.TYPES . 4–14

4.7.3 Unknown Content-Types . 4–15

4.7.4 Explicitly Specifying Content-Type . 4–16

4.8 Language Variants . 4–17

4.9 Character Set Conversion . 4–18

4.10 Error Reporting . 4–19

4.10.1 Basic and Detailed . 4–19

4.10.2 Site Specific . 4–20

4.11 OPCOM Logging . 4–23

4.12 Access Logging . 4–23

4.12.1 Log Format . 4–23

4.12.2 Log Per-Period . 4–26

4.12.3 Log Per-Service . 4–27

4.12.4 Log Per-Instance . 4–27

4.12.5 Log Naming . 4–28

4.12.6 Access Tracking . 4–28

4.12.7 Access Alert . 4–29

iv

Chapter 5 Security Considerations

5.1 Server and Site Testing . 5–2

5.2 Recommended Package Security . 5–4

5.3 Maintaining Package Security . 5–6

5.4 Independent Package and Local Resources . 5–7

5.5 Configuration . 5–8

5.5.1 Directory Listings . 5–8

5.5.2 Server Reports . 5–8

5.5.3 Scripting . 5–9

5.5.4 Server Side Includes . 5–9

5.6 Scripting . 5–9

5.7 Authorization . 5–10

5.8 Miscellaneous Issues . 5–10

5.9 Site Attacks . 5–12

Chapter 6 String Matching

6.1 Wildcard Patterns . 6–1

6.2 Regular Expressions . 6–2

6.3 Examples . 6–4

6.4 Expression Substitution . 6–4

Chapter 7 Conditional Configuration

7.1 Service Conditionals . 7–1

7.2 If..endif Conditionals . 7–1

7.3 Conditional Keywords . 7–3

7.3.1 Notepad: Keyword . 7–7

7.3.2 Rand: Keyword . 7–8

7.3.3 Request: Keyword . 7–8

7.3.4 Instance: and Robin: Keywords . 7–9

7.3.5 Time: Keyword . 7–10

7.3.6 Trnlnm: Keyword . 7–11

7.3.7 Host Addresses . 7–11

7.4 Examples . 7–12

7.5 Dictionary . 7–14

7.5.1 Configuration Entries . 7–14

7.5.2 Other Entries . 7–15

7.5.3 Entry Substitution . 7–15

7.5.4 WATCH Dictionary . 7–15

v

Chapter 8 Global Configuration

8.1 Functional Groupings . 8–2

8.2 Alphabetic Listing . 8–9

Chapter 9 Service Configuration

9.1 Specific Services . 9–2

9.2 Generic Services . 9–2

9.3 SSL Services . 9–2

9.4 Administration Services . 9–3

9.5 IPv4 and IPv6 . 9–3

9.6 To www. Or Not To www. 9–4

9.7 Service Directives . 9–5

9.8 Directive Detail . 9–6

9.9 Administration . 9–10

9.10 Examples . 9–10

Chapter 10 Message Configuration

10.1 Behaviour . 10–2

10.2 Message File Format . 10–2

10.3 Multiple Language Specifications . 10–4

10.4 Supplied Message Files . 10–5

Chapter 11 Cache Configuration

11.1 Non-File Content Caching . 11–2

11.2 Permanent and Volatile . 11–3

11.3 Cache Suitability Considerations . 11–3

11.4 Cache Content Validation . 11–5

11.5 Cache Configuration . 11–5

11.6 Cache Control . 11–7

11.7 Circumventing The Cache . 11–7

Chapter 12 Request Processing Configuration

12.1 Rule Interpretation . 12–2

12.2 VMS File System Specifications . 12–3

12.3 Traditional File Specifications (ODS-2) . 12–4

12.4 Extended File Specifications (ODS-5) . 12–4

vi

12.4.1 Characters In Request Paths . 12–5

12.4.2 File Name Ambiguity . 12–5

12.4.3 Characters In Server-Generated Paths . 12–6

12.5 Rules . 12–6

12.5.1 MAP, PASS, FAIL Rules . 12–7

12.5.2 REDIRECT Rule . 12–7

12.5.3 USER Rule . 12–8

12.5.4 EXEC/UXEC and SCRIPT, Script Mapping Rules . 12–9

12.5.5 SET Rule . 12–11

12.6 Reverse Mapping . 12–29

12.7 Mapping Examples . 12–30

12.8 Virtual Servers . 12–31

12.9 Conditional Mapping . 12–32

12.10 Mapping User Directories (tilde character (‘‘~’’)) . 12–32

12.10.1 Using The SYSUAF . 12–33

12.10.2 Without Using The SYSUAF . 12–34

12.11 Cross Origin Resource Sharing . 12–34

Chapter 13 Authorization Configuration (Basics)

13.1 SYSUAF/Identifier Authentication . 13–1

13.2 Other Authentication . 13–3

13.3 Read and Write Groupings . 13–4

13.4 Considerations . 13–4

vii

Chapter 1

New to WASD? Start Here!

Welcome!

This chapter provides a quick guide to getting your WASD package installed, configured and
serving. This covers initial installation.

1. Unzip Package

Install the files following the guidelines in Chapter 2 Note that more than one archive
may be needed (Source Archive, Object Module Archives).

If Transport Layer Security (TLS - a.k.a. Secure Sockets Layer - SSL) is to be used
and a TLS/SSL server image to be built the WASD [Open]SSL product must be installed
at this stage (see ‘‘WASD Web Services - Features and Facilities’’). An existing HP SSL1
(HP SSL is obsolete) for OpenVMS product requires no additional step. If the WASD
[Open]SSL package it must UNZIPed into the [.WASD_ROOT] tree at this stage.

$ SET DEFAULT [.WASD_ROOT]
$ UNZIP device:[dir]archive.ZIP

2. INSTALL Package

Server installation is performed using the INSTALL.COM procedure (Section 2.7).

• Build Package - Compile and link, or just link supplied object files to produce VMS
executables for the system’s version of VMS.

• Check Package - Check basic operation of the package (Section 2.10).

• Create Server and Scripting Accounts - Create two independent accounts, one
for executing the server, the other for executing scripts (Section 3.1). If quotas are
enabled on the target disk provides an ambit allocation for these accounts. Review
this at some stage.

• Set Package Security - This sections traverses the newly installed tree and sets
all package directories and files to required levels of access (Section 5.3).

• Copy Support and Configuration Files - Copy the example server support and
configuration files (Section 3.3).

New to WASD? Start Here! 1–1

• Install Scripts - Selectively copy groups of scripts from package build directories
into the scripting directories.

3. Configure Package

Following the execution of the INSTALL.COM procedure the package should require only
minor, further configuration.

Initially two files may require alteration.

1. The startup file, possibly to set the local WASD_CONFIG_GMT logical (for systems not
supporting DTSS (e.g. DECnet-Plus)). Consider using the STARTUP_LOCAL.COM
file for other site-specific requirements (Section 3.3).

2. The only configuration that should require immediate attention will be to the mapping
rules (Chapter 12).

More generally server runtime configuration involves the considerations discussed in
Section 4.2 along with the following aspects:

• Configuring the HTTP server run-time characteristics (Chapter 4).

• Mapping request paths to the VMS file system, and to other things such as scripts
(Chapter 12).

• Customizing some messages (or all if non-English language environment) (Chap-
ter 10).

• Establishing an authentication and authorization environment.

4. Start Server

Execute the startup procedure. Get your browser and connect!

5. Find Out What’s Wrong :^(

Of course something will not be right! This can happen with the initial configuration and
sometimes when changing configuration. The server provides information messages in
the run-time log, look in the WASD_ROOT:[LOG_SERVER] directory.

Remember, the basic installation’s integrity can always be checked as described in
Chapter 2, Section 2.10. This uses the configuration files from the [EXAMPLE] directory,
so provided these have not been altered the server should execute in demonstration mode
correctly.

Can’t resolve it? See Section 2.17.

1–2 New to WASD? Start Here!

Chapter 2

Installation and Update

The WASD package is distributed as ZIP archives.

It generally pays to use the latest version of VMS UNZIP available. Archives will contain a
comment about the minimum version required, check that as described in the next paragraph.
To show the version of the current UNZIP utility, use

$ UNZIP -v

The ZIP archive will contain brief installation instructions. Use the following command to
read this and any other information provided.

$ UNZIP -z device:[dir]archive.ZIP

It is recommended to check the integrity of, then list the contents of, the archive before
UNZIPing.

$ UNZIP -t device:[dir]archive.ZIP
$ UNZIP -l device:[dir]archive.ZIP

The archive will have the structure:

Archive: SYS$SYSDEVICE:[WASD]WASD1100.ZIP;1

WASD VMS Web Services, Copyright (C) 1996-2016 Mark G.Daniel.
This package (all associated programs), comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it under the
conditions of the GNU GENERAL PUBLIC LICENSE, version 3, or any later version.
http://www.gnu.org/licenses/gpl.txt

* Full release of v11.0.0 (May 2016)
**
*** CONTAINS SOURCE FILES, DOCUMENTATION, ETC. ***
**
Package must be built using INSTALL or UPDATE as described below.

* To install files:
$ SET DEFAULT device:[000000]
$ UNZIP device:[dir]WASD1100.ZIP

Installation and Update 2–1

* To build/link images use the appropriate one of:
$ @device:[WASD_ROOT]INSTALL
$ @WASD_ROOT:[000000]UPDATE

8< snip 8<
VMS file attributes saved ... use UnZip 5.2+ on OpenVMS

Archive created 1-MAY-2016

Length Date Time Name
-------- ---- ---- ----

0 04-17-16 00:50 wasd_root/axp-bin/
0 04-17-16 00:50 wasd_root/axp/
0 04-17-16 00:50 wasd_root/cgi-bin/
0 04-17-16 00:51 wasd_root/doc/
0 04-17-16 00:51 wasd_root/example/
0 04-17-16 00:51 wasd_root/exercise/

2734 03-06-03 17:20 wasd_root/favicon.ico
8< snip 8<

270 11-05-09 06:59 wasd_root/startup/readme.html
426 11-05-09 06:38 wasd_root/vax-bin/readme.html
452 11-05-09 06:18 wasd_root/vax/readme.html

-------- -------
20288784 919 files

2.1 Package UNZIP
The archive contains the complete directory tree. Hence it is necessary to SET DEFAULT
into the top-level directory of the volume the package is to be installed on.

$ SET DEFAULT device:[000000]
$ UNZIP device:[dir]archive.ZIP

Updating From v9.3 or Earlier
Before UNZIPing the v11 package and when updating an existing v9.3 or earlier
installation the root directory must be renamed from HT_ROOT.DIR to WASD_

ROOT.DIR. The v10 and later packages use [WASD_ROOT] as the top-level directory
in line with other naming schema changes employing ‘‘WASD’’. Remember to modify
local startup procedures in-line with this new top-level directory name. Also note that
the v11 package is not suitable for updating from existing v8.0 or earlier installation.

Source Archive, Object Module Archives

The complete package, source code, documentation, examples, etc., is provided in a single
main archive. Installation and other build procedures allow the entire package to be compiled
and linked from this if prefered. This requires a later version of DEC C (preferably v6.n or
greater).

In addition, for those unable or not wishing to fully build the distribution, three other
platform-specific archives are available, AXP (Alpha) IA64 (Itanium) and VAX, containing
a complete set of object modules, allowing the package to be built via a link operation only.

2–2 Installation and Update

If a complete build is planned then only the main archive is required. If a link-only build
then an additional archive for each architecture must be UNZIPped as described above.
This applies to both full installations and subsequent updates. The archives will be clearly
identified with the architecture type, as illustrated in this example.

$ UNZIP device:[dir]archive-AXP.ZIP
$ UNZIP device:[dir]archive-IA64.ZIP
$ UNZIP device:[dir]archive-VAX.ZIP

Note
The WASD distribution and package organisation fully supports mixed-architecture
clusters (AXP, Itanium and/or VAX in the one cluster) as one integrated installation.

WASD OpenSSL Archive

Building an SSL-capable version of the server is a common requirement. WASD SSL is
discussed in detail in ‘‘WASD Web Services - Features and Facilities’’ and if using the WASD
SSL package it is also possible to install (or update) that package after UNZIPing the primary
archive and optional object module(s). As noted in the above SSL section, the server can also
be built against an existing VMS SSL product and an existing OpenSSL installation.

Note
The WASD OpenSSL kit is designed as an update to an existing WASD installation
and so expects to be UNZIPed under the root directory. Note the use of the ‘‘-d’’ switch
in the following example.

$ UNZIP -d [.WASD_ROOT] device:[dir]OPENSSLWASDnnn-arch.ZIP

Existing Installations

When installing an archive as an update to an existing installation consider the following.

• Some insurance on the directory tree is recommended in case the update should fail or
otherwise be unusable or problematic (of course, this is good advice whenever about to
make major changes to anything!) This may be in the format of a regular site backup,
special pre-update backup, or special pre-update ZIP archive of the directory tree. The
latter two could be accomplished using commands similar to the following:

$ BACKUP WASD_ROOT:[000000...] location:WASDROOT.BCK/SAVE/VERIFY

$ ZIP "-V" location:WASDROOT.ZIP device:[WASD_ROOT...]*.*
$ ZIP "-T" location:WASDROOT.ZIP

If using ZIP then ensure that a previous version of the target ZIP file does not already
exist. If it does then that version is updated, a new version is not created.

• For existing files a new version is created (the first time this is about to occur the
UNZIPper requests permission - either ‘‘A’’ for all, or ‘‘y’’ or ‘‘n’’ or a per-file basis).

• It is possible to selectively extract portions of a tree if something has become damaged.
This would be accomplished by specifying what needs to be extracted from the archive
(instead of the default all), as illustrated by the following example where only the Alpha
object modules are extracted.

Installation and Update 2–3

$ SET DEFAULT device:[000000]
$ UNZIP device:[dir]archive-AXP.ZIP ht_root/src/httpd/obj_axp/*.*

Multiple Installations

Multiple, independent installations and builds of WASD are supported. See Section 2.13 later
in this chapter.

2.2 ODS-5 Volumes
The WASD package can be installed on and used from ODS-5 (extended file specification)
volumes. Note that the installation procedures and file system organisation of the package
tree has been designed for ODS-2 compliance. (Of course the issue of installing WASD on
an ODS-5 volume is completely separate from the ability to serve the contents of an ODS-5
volume!)

2.3 Accessible Volume
Unlikely as it might be to install the package on a private or otherwise protected volume,
the server and scripting accounts being unprivileged in themselves, require access sufficient
to read, write and delete files from the volume (disk). The following illustrates how to check
this and what the protections should look like. Generally any device that an unprivileged
user can use the server accounts can use.

$ SHOW SECURITY /CLASS=VOLUME DKA0:

ALPHASYS object of class VOLUME
Owner: [1,1]
Protection: (System: RWCD, Owner: RWCD, Group: RWCD, World: RWCD)
Access Control List: <empty>

2.4 Package Directory Structure
The package directories and content are organised as follows. Note that only some of these can
be accessed by the server account (and therefore seen in server-generated directory listings)
due to directory and file protections (Section 5.2).

Package Directory Structure

Directory Description

[AXP-BIN] Alpha executable script files

[AXP] Alpha build and utility area

[CGI-BIN] architecture-neutral script files

[DOC] package documentation

[EXAMPLE] package examples

2–4 Installation and Update

Directory Description

[EXERCISE] package test files

[HTTP$NOBODY] scripting account default home area

[HTTP$SERVER] server account default home area

[IA64-BIN] Itanium executable script files

[IA64] Itanium build and utility area

[INSTALL] installation, update and security procedures

[LOCAL] site configuration files

[LOG] site access logs

[LOG_SERVER] server process (SYS$OUTPUT) logs

[RUNTIME] graphics, help files, etc.

[SCRATCH] working file space for scripts

[SCRIPT] example architecture-neutral scripts

[SRC] package source files

[STARTUP] package startup procedures

[VAX-BIN] VAX executable script files

[VAX] VAX build and utility area

2.5 TCP/IP Infrastructure
The WASD installation assumes that the system’s TCP/IP infrastructure is correctly installed
and configured, and is operating normally. For example, it is not unknown for a freshly built
system to experience host name resolution problems preventing its own host name from being
resolved and making even elementary server startup impossible.

2.6 SYSUAF and RIGHTSLIST WARNING!
The WASD installation procedure does, and to a lesser degree the update procedure can, make

additions and/or modifications to SYSUAF.DAT and RIGHTLIST.DAT, for default
server and scripting accounts and to facilitate their access to the package directory tree.

Also, when the server image begins execution it may add an identifier, required for
script process management, to RIGHTSLIST.DAT.

These behaviours must be considered in site environments where such changes are prohibited
or closely controlled.

Installation and Update 2–5

2.7 Installation DCL Procedure
The INSTALL.COM procedure assists with the first installation of WASD. It provides a vanilla
setup, using the standard directories and account environment described in this document.
All sections prompt before performing any action and generally default to ‘‘no’’. Read the
information and questions carefully!

After UNZIPing the package do the following:

$ SET DEFAULT device:[WASD_ROOT]
$ @INSTALL

It performs the following tasks:

1. Build Executables - Either compile sources and link, or just link package object code
to produce images for the local version of VMS. If the system has a suitable SSL toolkit
the installer is requested whether an SSL enabled version be built. Note the possible
UDFSYM described in Section 2.9.

2. Check Package - Executes a procedure that runs up the HTTPd in demonstration mode.
Allows evaluation/checking of the basic package (Section 2.10).

3. Create Server and Scripting Accounts - Create two, independent accounts, one for
executing the server, the other for executing scripts (Section 3.1). If quotas are enabled
on the target disk provides an ambit allocation for these accounts. Review this at some
stage.

4. Set Package Security - This section traverses the newly installed tree and sets all
package directories and files to required levels of access. For directory settings see
Section 5.2.

5. Copy Support and Configuration Files - Copy the example server support and
configuration files (Section 3.3).

6. Install Scripts - Selectively copy groups of scripts from package build directories into
the scripting directories.

Support files to consider when customizing startup, etc. (see Section 3.3 for further detail):

STARTUP.COM
STARTUP_LOCAL.COM
STARTUP_SERVER.COM

2.8 Update DCL Procedure
The UPDATE.COM procedure assists with subsequent updates of WASD. It assumes a vanilla
setup, using the standard directories and account environment described in this document.
All sections prompt before performing any action and generally default to ‘‘no’’. Read the
questions carefully!

Updating From v9.3 or Earlier
Before UNZIPing the v11 package and when updating an existing v9.3 or earlier
installation the current root directory must be renamed from HT_ROOT.DIR to

WASD_ROOT.DIR. The v10 and later packages use [WASD_ROOT] as the top-level
directory in line with other naming schema changes employing ‘‘WASD’’. Remember to
modify local startup procedures in-line with this new top-level directory name. Also

2–6 Installation and Update

note that the v11 package is not suitable for updating from an existing v8.0 or earlier
installation.

Of course it is best (read mandatory) for the server to be shut down during an update!

$ HTTPD/DO=EXIT/ALL

After UNZIPing the updated package do the following:

$ SET DEFAULT WASD_ROOT:[000000]
$ @UPDATE

It provides the following functions:

1. Build Executables - Either compile sources and link, or just link package object code
to produce images for the local version of VMS. If the system has a suitable SSL toolkit
the installer is requested whether an SSL enabled version be built. Note the possible
UDFSYM described in Section 2.9.

2. Server Quick-Check - Executes a procedure that runs up the HTTPd in demonstration
mode. Allows evaluation/checking of the basic package (Section 2.10).

3. Server Support/Configuration Files - Copies changed example HTTP server configu-
ration and support files from the [EXAMPLE] directory to the [HTTP$SERVER], [LOCAL]
and [STARTUP] directories.

4. Update Scripts - Selectively copy groups of scripts from package build directories into
the scripting directories.

5. Reapply Package Security - This section traverses the updated tree and sets all
package directories and files to required levels of access. For directory settings see
Section 5.2.

6. Post-Update Cleanup - Prompts for permission to execute the post-update procedure
described below.

7. Purge Files - Prompts for permission to purge the entire WASD_ROOT:[000000...] tree.

If declined during the update procedure the post-update steps 6 and 7 can be performed at
any subsequent time using

$ SET DEFAULT WASD_ROOT:[000000]
$ @UPDATE CLEANUP
$ PURGE [...]

2.9 %LINK-I-UDFSYM
Linking the server code against older versions of OpenSSL (less likely) or the HP SSL product
(more likely, V1.4 for instance) will result in the reporting of one, two or three undefined
symbols (usually one or two as shown below).

%LINK-W-NUDFSYMS, 1 undefined symbol:
%LINK-I-UDFSYM, SSL_GET_SERVERNAME

%LINK-W-NUDFSYMS, 2 undefined symbols:
%LINK-I-UDFSYM, TLSV1_1_METHOD
%LINK-I-UDFSYM, TLSV1_2_METHOD

Installation and Update 2–7

Any of these three reports may safely be ignored as the server is designed to detect the
absence and disable the related functionality.

2.10 Quick-Check
Once installed or updated it is possible to check the basic package at any time using the
[INSTALL]DEMO.COM procedure. This invokes the server image using the /DEMO qualifier
allowing some behaviours not possible under general use. Follow the displayed instructions.
Basically, the server should start and become reachable via port number 7080. So, to test
availability, using your prefered browser enter the URL listed on line starting with ‘‘%HTTPD-
I-SERVICE’’ and the WASD welcome page should be displayed.

$ @WASD_ROOT:[INSTALL]DEMO.COM

* WASD PACKAGE DEMONSTRATOR *

When finished using demonstrator abort server execution using control-Y
(a subprocess will be spawned to preserve current process environment)

Use a browser to access either of the "%HTTPD-I-SERVICE"s when the server
starts. (There will be one for a standard service and another for SSL.)

The server will be running in promiscuous mode!
Any username with the password specified below can be used for authentication.
Enter a string to use as a password when later prompted by your browser.

Password (for demo authentication)? []: anyoldpassword

%DCL-S-SPAWNED, process SYSTEM_61053 spawned
%DCL-S-ATTACHED, terminal now attached to process SYSTEM_61053
%HTTPD-I-SOFTWAREID, HTTPd-WASD/11.0.0 OpenVMS/AXP SSL
WASD VMS Web Services, Copyright (C) 1996-2016 Mark G.Daniel.
This package (all associated programs), comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it under the
conditions of the GNU GENERAL PUBLIC LICENSE, version 3, or any later version.
http://www.gnu.org/licenses/gpl.txt
%HTTPD-I-STARTUP, 01-MAY-2016 22:39:04
%HTTPD-I-ALIGN, start collecting alignment faults (64kB,128,0xFFFFFFF0)
%HTTPD-I-WASD_ROOT, 1DKA0:[WASD_ROOT]
%HTTPD-I-ENVIRONMENT, 0
%HTTPD-I-SYSTEM, Digital Personal WorkStation VMS V8.3
%HTTPD-W-SYSPRV, operating with implicit SYSPRV (UIC group 1)
%HTTPD-I-TCPIP, HP TCPIP$IPC_SHR V5.7-ECO1 (21-MAY-2010 14:44:46.64)
%HTTPD-I-MODE, INTERACTIVE
%HTTPD-I-ODS5, supported by Alpha VMS V8.3
%HTTPD-I-GMT, +09:30
%HTTPD-I-INSTANCE, supervisor
%HTTPD-I-GZIP, using GNV$LIBZSHR32 V1.2.8
%HTTPD-I-GBLSEC, created global section of 16 page(let)s
%HTTPD-I-INSTANCE, 1 process
%HTTPD-I-SSL, OpenSSL 1.0.2g 1 Mar 2016
-SSL-I-PROTOCOL, TLSv1,TLSv1.1,TLSv1.2
-SSL-I-OPTIONS, 0x80510BFF
-SSL-I-SNI, Server Name Indication enabled
-SSL-I-DH, ephemeral DH param 1024,2048 bits
%HTTPD-I-HTTP2, enabled
%HTTPD-W-HTTP2, network/mailbox read buffer size increased to 16384 bytes

2–8 Installation and Update

%HTTPD-I-INSTANCE, process name WASD:7080
%HTTPD-I-WEBDAV, disabled
%HTTPD-W-AUTH, 1 informational, 1 warning, 0 errors at load
1.w PROMISCUOUS authenticating any username with specified password!
2.i Cache for 32 records of 768 bytes in local storage of 49 page(let)s
%HTTPD-W-MAP, 1 informational, 0 warning, 0 errors at load
1.i ODS-5 processing enabled
%HTTPD-I-PROXYVERIFY, for 32 records in local storage of 14 page(let)s
%HTTPD-I-SCRIPTING, as HTTP$NOBODY
%HTTPD-I-DCL, subprocess scripting
%HTTPD-I-ACTIVITY, created global section of 1312 page(let)s
%HTTPD-I-SERVICE, http://klaatu.private:7080
%HTTPD-I-SERVICE, https://klaatu.private:7443
%HTTPD-I-SSL, klaatu.private:7443
%HTTPD-I-DEMO, demonstration mode
1.i subprocess scripting
2.i promiscuous authentication
3.i directory access control files ignored
4.i [DirAccess] enabled
5.i [DirMetaInfo] enabled
6.i [DirWildcard] enabled
7.i [Logging] disabled
8.i [ReportBasicOnly] disabled
9.i [ReportMetaInfo] enabled
%HTTPD-I-BEGIN, 01-MAY-2016 22:39:05, accepting requests

When http://the.host.name:7080 is accessed the browser should display something resem-
bling

-
/-- / \
/W A S D\ Welcome to "WASD VMS Web Services" version 11.0

Empowered by VMS
\/---\ /

--

Note
The WASD server which is started by the [INSTALL]DEMO.COM procedure does
not have the full environment setup at that time. It is deliberately limited to the
single process context. For instance, do not try to execute the command-line directives
described in this document.

2.11 ‘‘Clone’’ Procedure
The [INSTALL]CLONE.COM procedure assists in creating a ZIP archive of an existing WASD
installation suitable for recreating the server on another system without the necessity of a full
installation. This could be used to populate a series of systems with pre-configured servers.

2.12 Re-Linking
After a major update to the operating system the package may refuse to start, reporting a
message like:

%DCL-W-ACTIMAGE, error activating image WHATEVER
-CLI-E-IMGNAME, image file DKA0:[SYS0.SYSCOMMON.][SYSLIB]WHATEVER_SHR.EXE
-SYSTEM-F-SHRIDMISMAT, ident mismatch with shareable image

Installation and Update 2–9

This implies the executables require re-linking for your particular version of VMS. This can
be accomplished quite simply, perform the linking section only of the update DCL procedure,
Section 2.8.

2.13 Multiple Installations
It is possible, and often useful, to build another WASD on a system with an existing and/or
running installation. One purpose might be to maintain the previous version as a fallback in
case of unexpected problems when migrating to a more recent version. Another, to maintain
multiple releases for regression testing.

The general process is as follows:

• A clash with any existing [WASD_ROOT] directory must be avoided.
Using the ‘‘-d’’ switch, UNZIP into a working directory using any unique name (BLAH in
this example).

$ SET DEFAULT device:[000000]
$ UNZIP -d [.BLAH] device:[dir]archive.ZIP

Do the same with object module archive(s) if required.

• For the WASD OpenSSL package the WASD_ROOT portion of the tree must additionally
be specified.

$ UNZIP -d [.BLAH.WASD_ROOT] device:[dir]OPENSSLWASDnnn-arch.ZIP

• Rename the WASD root directory into the current directory using a representative name
(appending the version number is suggested) and then delete the working directory.

$ RENAME [.BLAH]WASD_ROOT.DIR []WASD_ROOT_nnnn.DIR
$ DELETE BLAH.DIR;*

• Move into the just renamed directory and build using the parameter INSTALL.
The build is (always) performed using locally defined logical names.

$ SET DEFAULT [WASD_ROOT_nnnn]
$ @INSTALL INSTALL

The INSTALL parameter overrides the install check and advisory message otherwise
generated:

* "WASD_ROOT" LOGICAL NAME DETECTED. *
* THIS DOES NOT LOOK LIKE AN INSTALL! *

• As appropriate, copy configuration and other files from the current WASD installation to
the new.
Check release notes for any variants.

$ COPY WASD_ROOT:[LOCAL]*.* [WASD_ROOT_nnnn.LOCAL]

Other site-specific localisations similarly may need to be copied or otherwise reproduced.
For example, server or scripting account LOGIN.COM, scripts, etc.

2–10 Installation and Update

To move the running WASD environment from one installation to another:

• Shut down the currently running server.

$ HTTPD/DO=EXIT=NOW

• Start the desired version of WASD from its file-system location.

$ @device:[WASD_ROOT_nnnn.STARTUP]STARTUP.COM

WASD logical names and environment will reflect the particular WASD root directory.
Site-specific elements in the startup might need to be similarly flexible.

2.14 VMS 6.n
As of WASD v10.1 the minimum supported version for build and operation is VMS V7.0. Had
to drag ourselves into the mid-1990s at some stage!

2.15 VMS 5.5-n
WASD does not build or run under VMS 5.5-2 or earlier.

2.16 Local Setup Suggestions
Package updates will never contain anything in these directories:

WASD_ROOT:[HTTP$NOBODY]
WASD_ROOT:[HTTP$SERVER]
WASD_ROOT:[LOCAL]
WASD_ROOT:[STARTUP]

To prevent the overwriting of local configuration files it is suggested these be placed in the
WASD_ROOT:[LOCAL] directory. Local authentication databases could also be placed in the
[LOCAL] directory. Startup files can be placed where-ever the local site manages system
startup. These could be placed in the WASD_ROOT:[STARTUP] directory.

2.17 Reporting Problems
This package, as is generally the case with freeware, is mainly developed and supported
outside of the author’s main occupation and working hours. Reports of problems and bugs
(while not necessarily welcome :-), as well as general queries, are responded to as soon as
practicable. If the documentation is inaccurate or could benefit from clarification in some
area please advise of this also (the better the documentation the less queries you have to field
personally . . . or so the theory goes).

With all reports please include the version of the server or script, and the hardware platform,
operating system and TCP/IP package and version in use.

If a server error message is being generated please examine the HTML source of the error
page. The ‘‘<META...>’’ information contains version information as well as valuable source
code module and line information. Include this with the report.

If the server is exiting with a server-generated error message this information also contains
module and line information. Please include this with the report.

Installation and Update 2–11

The WATCH facility is often a powerful tool for problem investigation. It is also very useful
when supplying details during problem resolution. When supplying WATCH output as

part of a problem report please ZIP the file and include it an an e-mail attachment.

Mailers often mangle the report format making it difficult to interpret.

Image crash dumps may also be generated, although these are of less value than the case of
the previous two.

Reports may be e-mailed to
Mark.Daniel@wasd.vsm.com.au

2–12 Installation and Update

Chapter 3

Server Account and Environment

The HTTP server account should be a standard account, preferably in a group of its own
(definitely at least a non-system, non-user group), with sufficient quotas to handle the
expected traffic.

Process Quotas!
Server process quotas must be sufficient to support the expected traffic load. BYTLM
in particular, and then BIOLM, DIOL, FILLM and PGFLQUO, are all considerations.

Symptoms of insufficient process quotas include:

• Textual pages OK, but pages with a significant number of images having some or all
‘‘broken’’.

• Scripts failing mysteriously, particularly when multiple in use concurrently.

• Server and associated scripts all apparently waiting MWAIT or RWAST states.

A general rule is more is better, after all, it will only use as much as it needs! To assist with
setting a reasonable BYTLM quota the WATCH report (see ‘‘WASD Web Services - Features
and Facilities’’) provides some feedback on server BYTLM usage.

TCP/IP Agent Resources!
On an associated topic; some TCP/IP agents require particular internal resources to
be adjusted against given loads (e.g. buffer space allocations). Symptoms of resource
starvation may be TCP/IP services, including WASD, ‘‘pausing’’ for significant periods
or associated processes entering miscellaneous wait states, etc., during processing.
Please ensure such TCP/IP agents are appropriately dimensioned for expected loads.

Later versions of TCP/IP Services for OpenVMS seem to have large default values
for socket send and receive buffers. MultiNet and TCPware are reported to improve
transfer of large responses by increasing low default values for send buffer size.
The WASD global configuration directives [SocketSizeRcvBuf] and [SocketSizeSndBuf]
allow default values to be adjusted. WATCH can be used to report network connection
buffer values.

Server Account and Environment 3–1

3.1 VMS Server Account
The following provides a guide to the account.

Username: HTTP$SERVER Owner: WASD Server
Account: HTTPD UIC: [077,001] ([HTTP$SERVER])
CLI: DCL Tables: DCLTABLES
Default: WASD_ROOT:[HTTP$SERVER]
LGICMD: LOGIN
Flags: Restricted DisNewMail
Primary days: Mon Tue Wed Thu Fri
Secondary days: Sat Sun
Primary 000000000011111111112222 Secondary 000000000011111111112222
Day Hours 012345678901234567890123 Day Hours 012345678901234567890123
Network: ##### Full access ###### ##### Full access ######
Batch: ##### Full access ###### ##### Full access ######
Local: ----- No access ------ ----- No access ------
Dialup: ----- No access ------ ----- No access ------
Remote: ----- No access ------ ----- No access ------
Expiration: (none) Pwdminimum: 6 Login Fails: 0
Pwdlifetime: 90 00:00 Pwdchange: (pre-expired)
Last Login: (none) (interactive), 11-MAY-1995 08:44 (non-interactive)
Maxjobs: 0 Fillm: 300 Bytlm: 5000000
Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0
Maxdetach: 0 BIOlm: 2048 JTquota: 1024
Prclm: 100 DIOlm: 1024 WSdef: 1000
Prio: 4 ASTlm: 2000 WSquo: 5000
Queprio: 0 TQElm: 100 WSextent: 20000
CPU: (none) Enqlm: 256 Pgflquo: 500000
Authorized Privileges:
NETMBX TMPMBX

Default Privileges:
NETMBX TMPMBX

3.2 VMS Scripting Account
The following provides a guide to the account.

3–2 Server Account and Environment

Username: HTTP$NOBODY Owner: WASD Scripting
Account: HTTPD UIC: [076,001] ([HTTP$NOBODY])
CLI: DCL Tables: DCLTABLES
Default: WASD_ROOT:[HTTP$NOBODY]
LGICMD: LOGIN
Flags: Restricted DisNewMail
Primary days: Mon Tue Wed Thu Fri
Secondary days: Sat Sun
Primary 000000000011111111112222 Secondary 000000000011111111112222
Day Hours 012345678901234567890123 Day Hours 012345678901234567890123
Network: ##### Full access ###### ##### Full access ######
Batch: ##### Full access ###### ##### Full access ######
Local: ----- No access ------ ----- No access ------
Dialup: ----- No access ------ ----- No access ------
Remote: ----- No access ------ ----- No access ------
Expiration: (none) Pwdminimum: 6 Login Fails: 0
Pwdlifetime: 90 00:00 Pwdchange: (pre-expired)
Last Login: (none) (interactive), 11-MAY-1995 08:44 (non-interactive)
Maxjobs: 0 Fillm: 300 Bytlm: 500000
Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0
Maxdetach: 0 BIOlm: 2048 JTquota: 1024
Prclm: 100 DIOlm: 1024 WSdef: 1000
Prio: 4 ASTlm: 2000 WSquo: 5000
Queprio: 0 TQElm: 100 WSextent: 20000
CPU: (none) Enqlm: 256 Pgflquo: 500000
Authorized Privileges:
NETMBX TMPMBX

Default Privileges:
NETMBX TMPMBX

3.3 Account Support Files
Note

Support procedures often change between versions. It is always advisable to check
the versions documentation before installing or updating. Examples may be found in
WASD_ROOT:[EXAMPLE].

online Web link

HTTPd Executables

Two server executables can be built by the package.

• HTTPD.EXE - basic server

• HTTPD_SSL.EXE - SSL-enabled server.

Privileged Image

As the HTTP$SERVER account should be completely unprivileged, and the HTTPd image re-
quires ALTPRI, CMKRNL, DETACH, NETMBX, TMPMBX, PRMGBL, PRMMBX, PSWAPM,
SECURITY, SHMEM (VAX only), SYSGBL, SYSLCK, SYSNAM, SYSPRV and WORLD priv-
ileges (see the ‘‘WASD_ROOT:[SRC.HTTPD]READMORE.TXT’’ document for a description of
how and why the server uses these privileges).

Server Account and Environment 3–3

It is installed using a command similar to the following:

$ INSTALL = "SYSSYSTEM:INSTALL/COMMAND_MODE"
$ INSTALL ADD WASD_EXE:HTTPD.EXE -
/PRIVILEGE=(ALTPRI,CMKRNL,DETACH,PRMGBL,PRMMBX,PSWAPM,-

SECURITY,SYSGBL,SYSLCK,SYSNAM,SYSPRV,WORLD)

STARTUP.COM

Putting all this together the HTTP server startup procedure becomes something similar to the
supplied example. It should be called from SYSTARTUP_VMS.COM or the site’s equivalent.

This procedure will support simple and quite complex sites. It works closely with STARTUP_
SERVER.COM (see below). It is designed to accept parameters from the command-line or as
pre-assigned symbols. Operating this way requires no modifications to the procedure itself.
Startup characteristics are essentially determined by DCL symbol values. Some symbols are
booleans, switching functionality off and on, others require string values. When relevant
startup values are not assigned a reasonable default will be applied. See the following
examples.

Startup characteristics can be determined by supplying symbol assignment values as
command-line parameters when calling the procedure.

$ @DKA0:[WASD_ROOT.STARTUP]STARTUP WASD_DECNET=1 WASD_SSL=1 -
WASD_SSL_CERTIFICATE="WASD_ROOT:[LOCAL]ALPHA.PEM"

Startup characteristics can also be determined by assigning the symbol values before calling
the procedure itself.

$ WASD_DECNET = 1
$ WASD_SSL = 1
$ WASD_SSL_CERTIFICATE = "WASD_ROOT:[LOCAL]ALPHA.PEM"
$ @DKA0:[WASD_ROOT.STARTUP]STARTUP

On VAX platforms prior to VMS V6.2 the startup uses a system batch queue. By default
SYS$BATCH is used. An alternate queue can be specified.

$ @DKA0:[WASD_ROOT.STARTUP]STARTUP WASD_DECNET=1 WASD_BATCH_QUEUE=THIS$BATCH

Check the procedure itself for detail on symbol names and functionality.

See WASD_ROOT:[EXAMPLE]STARTUP.COM

STARTUP_LOCAL.COM

This file is automatically executed by the STARTUP.COM procedure immediately before the
server is actually started. It is provided to supply all the local site’s additional startup
requirements. For example, a STARTUP.COM defined logical name could be modified here
before the server proper is actually started.

See WASD_ROOT:[EXAMPLE]STARTUP_LOCAL.COM

3–4 Server Account and Environment

STARTUP_SERVER.COM

This procedure serves two purposes.

1. Server startup:

• If on VAX VMS V6.0 or V6.1 it is submitted to the SYS$BATCH queue during startup.
The batch portion creates a detached process, which then again uses this procedure
as input, supporting the executing HTTPd.

• With more modern versions and architectures of VMS the procedure becomes
SYS$COMMAND for a detached process created directly during the execution of
STARTUP.COM.

2. The procedure then controls the activation of the HTTPd executable image during server
restarts and exits.

See WASD_ROOT:[EXAMPLE]STARTUP_SERVER.COM

It is recommended to pass server startup command-line parameters using the WASD_
SERVER_STARTUP logical name that this procedure checks for and uses if present. If this
is defined the contents are applied to the server image when executed. It can be explicitly
defined before WASD startup.

$ DEFINE /SYSTEM /EXECUTIVE WASD_STARTUP_SERVER "/SYSUAF=ID"
$ @DKA0:[WASD_ROOT.STARTUP]STARTUP

The value can also be passed to the main startup procedure in a symbol. The startup
procedure then defines a system logical name with that value (note that any quotes used
must be escaped).

$ WASD_DECNET = 1
$ WASD_SSL = 1
$ WASD_SSL_CERTIFICATE = "WASD_ROOT:[LOCAL]ALPHA.PEM"
$ WASD_STARTUP = "/SYSUAF=ID"
$ @DKA0:[WASD_ROOT.STARTUP]STARTUP

It can also be manually redefined at any time and the server restarted to apply different
startup parameters to the running server.

$ DEFINE /SYSTEM /EXECUTIVE WASD_STARTUP_SERVER "/SYSUAF=(SSL,ID)"
$ HTTPD /DO=RESTART=NOW

3.4 Global Pages/Sections
Various accounting, cache and other shared data used by the server is provided by shared
global memory. These requires one permananet global section (SYSGEN parameter GBL-
SECTIONS) and a number of permanent global pages (SYSGEN parameter GBLPAGES) per
item. The number of items varies depending on configuration.

Global Sections

Server Account and Environment 3–5

Item Description Usage

Accounting Accumulates various data provided to the Server Administration
Statistics report and the HTTPMON utility

required

Activity Provides data to the Server Administration Activity Report graph required

Authentication When multiple WASD Instances are configured provides a shared
authentication cache

optional

Proxy Verification When multiple WASD Instances are configured provides an shared
proxy verification cache

optional

SSL Session Cache When SSL is used and multiple WASD Instances are configured
provides a shared SSL session cache

optional

If there are insufficient global sections or pages the server will fail to start for all requirements
except the activity statistics, this will just be disabled. Server process log startup messages
advise on current usage.

As permanent, system-accessible global sections are deployed it may be necessary to explicitly
delete them after ad hoc server experimentation, etc. (Section 3.6). The startup qualifier
/GBLSEC=NOPERM disables the creation of permanent global sections eliminating this
requirement.

3.5 Logical Names
WASD version 10 uses an independent logical name table (something previous versions did
not, see Section 3.5.1 below) and a different logical naming schema to earlier versions.

The following logical names are used in the operation of the package. These are usually
created by STARTUP.COM during server startup.

Package Logical Names

Logical Name Table Description Pre-v10 Equivalent

CGI-BIN WASD (Hyphen) System logical defining a
search list with the architecture-specific
executable directory first, local script
directory second, then the common
script directory, as a concealed device.

same

CGI_BIN WASD Directory containing architecture-
neutral script files.

same

CGI_EXE WASD Directory containing architecture-
specific script executables.

same

HT_EXE WASD Pre-v10.0 backward compatibility for
WASD_EXE.

same

3–6 Server Account and Environment

Logical Name Table Description Pre-v10 Equivalent

HT_LOGS WASD Pre-v10.0 backward compatibility for
WASD_LOG.

same

HT_ROOT SYSTEM Pre-v10.0 backward compatibility for
WASD_ROOT.

same

HT_SCRATCH WASD Pre-v10.0 backward compatibility for
WASD_SCRATCH.

same

WASD_AXP WASD Directory containing Alpha executable
images (WASD_ROOT:[AXP]).

HT_AXP **

WASD_AUTH WASD Directory containing authentica-
tion/authorization databases (files,
(WASD_ROOT:[LOCAL])).

none

WASD_CGI_AXP WASD Directory containing Alpha script
executables (WASD_ROOT:[AXP-BIN]).

CGI_AXP

WASD_CGI_IA64 WASD Directory containing Itanium script
executables (WASD_ROOT:[IA64-BIN]).

CGI_IA64

WASD_CGI_VAX WASD Directory containing VAX script
executables (WASD_ROOT:[VAX-BIN]).

CGI_VAX

WASD_CONFIG WASD Location of the configuration files. Can
be defined as a search list.

none

WASD_CONFIG_
AUTH

WASD Location of the authentica-
tion/authorization configuration file.

HTTPD$AUTH

WASD_CONFIG_
GLOBAL

WASD Location of the configuration file. HTTPD$CONFIG

WASD_CONFIG_
MAP

WASD Location of the mapping rule file. HTTPD$MAP

WASD_CONFIG_
MSG

WASD Location of the message file. HTTPD$MSG

WASD_CONFIG_
SERVICE

WASD Location of the optional service (virtual
host) configuration file.

HTTPD$SERVICE

WASD_DECNET_
CGI_OBJECT

SYSTEM Locates the supporting DCL procedure.
DECnet objects are system-global.

none

WASD_DECNET_
OSU_OBJECT

SYSTEM Locates the supporting DCL procedure.
DECnet objects are system-global.

none

WASD_EXE WASD Directory containing the executable
images.

HT_EXE **

Server Account and Environment 3–7

Logical Name Table Description Pre-v10 Equivalent

WASD_FILE_DEV[n] SYSTEM Locates the DCL procedure that will
integrate the specified environment’s
logical name table into the processes’
LNM$FILE_DEV (see above).

none

WASD_GMT WASD Offset from GMT (e.g. ‘‘+10:30’’, ‘‘-
01:15’’) For systems supporting DTSS
(e.g. DECnet-Plus) this logical may be
left undefined, with server time being
calculated using the SYS$TIMEZONE_
DIFFERENTIAL logical.

HTTPD$GMT

WASD_IA64 WASD Directory containing Itanium
executable images.

HT_IA64

WASD_LOG WASD If logging is enabled and no log file
name specified on the command line,
this logical must be defined to locate
the file. When a logging period is in
use this logical need only contain the
directory used to store the logs.

HT_LOG

WASD_LOGS WASD Optional definition, for convenient log
file specification.

HT_LOGS **

WASD_ROOT SYSTEM Location of WASD Web Services
directory tree, as a concealed device.

HT_ROOT **

WASD_SCRATCH WASD Location of an optional directory
that scripts can use for temporary
storage. Must be read+write+delete
accessible to the server account.
The WASD_CONFIG_GLOBAL
[DclCleanupScratchMinutesMax]
directive controls whether automatic
cleanup scans of this area delete
any files that are older than
[DclCleanupScratchMinutesOld].

HT_SCRATCH **

WASD_SITELOG WASD Location of the optional plain-text site
log file.

HTTPD$SITELOG

WASD_SSL_CAFILE WASD When using the SSL executable this
logical locates the optional Certificate
Authority list file.

HTTPD$SSL_CAFILE

WASD_SSL_CERT WASD When using the SSL executable this
logical locates the default certificate.

HTTPD$SSL_CERT

WASD_SERVER_
LOGS

WASD Location of the server process logs. HT_SERVER_LOGS
**

3–8 Server Account and Environment

Logical Name Table Description Pre-v10 Equivalent

WASD_STARTUP_
SERVER

WASD Used to pass parameters to the server
image startup command line.

HTTPD_STARTUP_
SERVER

WASD_VAX WASD Directory containing VAX executable
images.

HT_VAX **

**provided for back-
ward compatibility

3.5.1 WASD Name Table

In an effort to localise WASD-related logical names and avoid polluting the SYSTEM logical
name table WASD version 10 creates it’s own world-readable, system-writable name table,
and adds it to LNM$SYSTEM_DIRECTORY.

$ SHOW LOGICAL WASD_TABLE/TABLE=LNM$SYSTEM_DIRECTORY
"WASD_TABLE" [table] = "" (LNM$SYSTEM_DIRECTORY)

WASD logical names are then defined in that table leaving the SYSTEM table with just a
few essential names.

$ SHOW LOGICAL CGI*,HT*,WASD*,WWW*

(LNM$PROCESS_TABLE)

(LNM$JOB_81E3D580)

(WASD_TABLE)

"CGI-BIN" = "DKA0:[WASD_ROOT.CGI-BIN.]"
= "DKA0:[WASD_ROOT.AXP-BIN.]"

"CGI_BIN" = "WASD_ROOT:[CGI-BIN]"
"CGI_EXE" = "WASD_ROOT:[AXP-BIN]"
"HTBIN" = "CGI-BIN:[000000]"
"HT_CACHE_ROOT" = "DKA0:[HT_CACHE.]"
"HT_EXE" = "WASD_ROOT:[AXP]"
"HT_LOGS" = "WASD_ROOT:[LOG]"
"HT_SCRATCH" = "WASD_ROOT:[SCRATCH]"
"WASD_AUTH" = "WASD_ROOT:[LOCAL]"
"WASD_AXP" = "WASD_ROOT:[AXP]"
"WASD_CACHE_ROOT" = "DKA0:[HT_CACHE.]"
"WASD_CGILIBSHR32" = "CGI_EXE:CGILIBSHR32.EXE"
"WASD_CGI_AXP" = "WASD_ROOT:[AXP-BIN]"
"WASD_CGI_BIN" = "WASD_ROOT:[CGI-BIN]"
"WASD_CGI_EXE" = "WASD_ROOT:[AXP-BIN]"
"WASD_CGI_IA64" = "WASD_ROOT:[IA64-BIN]"
"WASD_CGI_VAX" = "WASD_ROOT:[VAX-BIN]"
"WASD_CONFIG" = "WASD_ROOT:[LOCAL]"
"WASD_CONFIG_AUTH" = "WASD_CONFIG:HTTPD$AUTH.CONF"
"WASD_CONFIG_GLOBAL" = "WASD_CONFIG:HTTPD$CONFIG.CONF"
"WASD_CONFIG_MAP" = "WASD_CONFIG:HTTPD$MAP.CONF"
"WASD_CONFIG_MSG" = "WASD_CONFIG:HTTPD$MSG.CONF"
"WASD_CONFIG_SERVICE" = "WASD_CONFIG:HTTPD$SERVICE.CONF"
"WASD_EXE" = "WASD_ROOT:[AXP]"
"WASD_HTTPD_EXE" = "WASD_EXE:HTTPD_SSL.EXE"
"WASD_IA64" = "WASD_ROOT:[IA64]"
"WASD_JAVA" = "WASD_ROOT:[JAVA]"

Server Account and Environment 3–9

"WASD_LOCAL" = "WASD_ROOT:[LOCAL]"
"WASD_LOGS" = "WASD_ROOT:[LOG]"
"WASD_SCRATCH" = "WASD_ROOT:[SCRATCH]"
"WASD_SCRIPT" = "WASD_ROOT:[SCRIPT]"
"WASD_SCRIPT_LOCAL" = "WASD_ROOT:[SCRIPT_LOCAL]"
"WASD_SERVER_LOGS" = "WASD_ROOT:[LOG_SERVER]"
"WASD_SSL_CAFILE" = "WASD_CONFIG:CA-BUNDLE_CRT.TXT"
"WASD_SSL_CERT" = "WASD_CONFIG:HTTPD.PEM"
"WASD_STARTUP" = "WASD_ROOT:[STARTUP]"
"WASD_STARTUP_SERVER" = "/SYSUAF=(ID,SSL)/PERSONA=RELAXED/PROFILE"
"WASD_VAX" = "WASD_ROOT:[VAX]"
"WWW_ROOT" = "DKA0:[WASD_ROOT.SRC.OSU]"
"WWW_SCRIPT_MAX_REUSE" = "999"

(LNM$GROUP_000001)

(LNM$SYSTEM_TABLE)

"HT_ROOT" = "DKA0:[WASD_ROOT.]"
"WASD_DECNET_CGI_OBJECT" = "DKA0:[WASD_ROOT.CGI-BIN]CGIWASD.COM"
"WASD_DECNET_OSU_OBJECT" = "DKA0:[WASD_ROOT.CGI-BIN]WWWEXEC.COM"
"WASD_FILE_DEV" = "DKA0:[WASD_ROOT]WASD_FILE_DEV.COM"
"WASD_ROOT" = "DKA0:[WASD_ROOT.]"

(LNM$SYSCLUSTER_TABLE)

(DECW$LOGICAL_NAMES)

As can be seen the number of LNM$SYSTEM_TABLE names is small, five in this example
(though it can vary). Logical name WASD_FILE_DEV locates a procedure to insert the
WASD_TABLE into a process’ LNM$FILE_DEV to make the table names available. Until
that is done they are not visible without an explicit /TABLE=WASD_TABLE. The server
automatically uses the procedure for itself and scripting processes. Site admins can simply

$ @WASD_FILE_DEV

at the command-line or in their LOGIN.COM to have it done for their interactive session(s).
This procedure location is variable within the file-system and needs to be located and accessed
without initially knowing that location.

The WASD_ROOT logical provides a convenient, global logical location for the primary
(default) WASD environment. HT_ROOT is used to provide pre-v10 backward-compatibility
with existing sites. (If yours does not need the name you can deassign it during server
startup.)

The WASD_DECNET_CGI_OBJECT and WASD_DECNET_OSU_OBJECT names provide
global locations for the two DECnet scripting environments. These logicals are defined when
a site uses the [STARTUP]STARTUP_DECNET.COM procedure. It is necessary to provide
a global location for these with multiple WASD environments because DECnet objects are
global entities. The one object must provide an infrastructure for potentially multiple WASD
environments.

Other SYSTEM logical names, WASD_TABLEn name tables, and WASD_FILE_DEVn logical
names are used for non-primary WASD environments (see ‘‘WASD Web Services - Features
and Facilities’’).

3–10 Server Account and Environment

3.5.2 Pre-v10

The server code accepts both the v10 or later and pre-v10 schemas. If it cannot find a v10
logical name it attempts to use a pre-v10 logical name. This has been provided in an effort to
make the transition as seamless as possible for existing sites. In addition the revised startup
procedures configure and use WASD_TABLE but can be directed to use the SYSTEM table
by STARTUP.COM being provided a WASD_TABLE=0 parameter (see STARTUP.COM).

$ WASD_TABLE = 0
$ @DKA0:[WASD_ROOT.STARTUP]STARTUP.COM

3.6 Server Startup
When starting up the server several characteristics of the server may be specified using qual-
ifiers on the command line. If not specified appropriate defaults are employed. For recom-
mended methods of passing parameters to the executable at server startup see STARTUP_
SERVER.COM. For clarity some esoteric and legacy qualifiers and parameters are not listed
in this table.

Server Image Command-Line Parameters

Parameter/Qualifier Description

/ALL[=integer] Has two roles. When starting a server up assigns that server to a
specific, non-default WASD environment (see /ENVIRONMENT)
When using the server control /DO= using /ALL specifies to do the
action to all servers in that particular environment.

/AUTHORIZATION=.. Control authentication and authorisation behaviour. See ‘‘WASD
Web Services - Features and Facilities’’

/CGI_PREFIX= The prefix to the CGI symbol names created for a script (defaults
to ‘‘WWW_’’). See ‘‘WASD Web Services - Scripting’’

/CLUSTER Apply control /DO= to all instances in a cluster (default is to
current node instance(s) only).

/DETACH= This qualifier allows a DCL procedure to be specified as input to a
directly detached process (in conjunction with /USER).

/DO= Command to be performed by the executing server.

/ENVIRONMENT= Integer indicating in which environment this server is executing

/GBLSEC=DELETE Allows a monitor-associated permanent global section to be
explicitly deleted. When a server starts it creates system-
accessible, permanent global sections in which to store accounting
and request data. As this is permanent it would be possible for a
site, perhaps experimenting with servers over a range of ports, to
consume significant amounts of global pages and sections. This
qualifier allows such sections to be deleted.

Server Account and Environment 3–11

Parameter/Qualifier Description

/GBLSEC=NOPERM Disables the creation of permanent global sections. They are
automatically deleted when the server image exits.

/[NO]LOG[=name] Either disables logging (overrides configuration directive), or
enables logging and optionally specifies the log file name (also
see section Section 3.5, logging is disabled by default). If the file
specification is ‘‘SYS$OUTPUT’’ the server issues log entries to
<stdout>, allowing user-defined log formats to be easily checked
and refined.

/NETWORK Run the server and any scripting processes as NETWORK mode
rather than the default detached OTHER mode.

/NOTE=string Annotate the server process log with the specified string. Intended
to assist auditing server events such as restarts, maaping reloads
and the like.

/PERSONA[=..] Enables and controls detached process scripting. See WASD Web
Services - Scripting

/PRIORITY= Server process priority (default is 4).

/[NO]PROFILE Allows SYSUAF-authenticated username security profiles to be
used for file access.

/PROMISCUOUS[=password] Server will accept any authentication username/password pair
(used for testing, demonstrations, etc.)

/PROXY=string Allows proxy maintainance activities to be executed from the
command line (e.g. from batch jobs, etc.).

/SCRIPT=AS=username Specifies the username of the default scripting account.

/SERVICE= Comma-separated, list of server services (overrides the [Service]
configuration parameter).

/SOFTWARE= An arbitrary string that can be used to override the server
software identification (i.e. ‘‘HTTPd-WASD/10.4.0 OpenVMS/AXP
SSL’’).

/[NO]SSL[=..] Controls Secure Sockets Layer protocol behaviour. See ‘‘WASD
Web Services - Features and Facilities’’

/[NO]SYSUAF[=..] Controls VMS (SYSUAF) authentication/authorisation behaviour.
See ‘‘WASD Web Services - Features and Facilities’’

/USER=username For VMS 6.2 and later this qualifier allows the /DETACH qualifier
to directly create a detached process executing as the specified
username.

/VALBLK[=16 | 64] For server to (try) to use either pre-VMS V8.2 16 byte lock value
block or the VMS V8.2 and later 64 byte lock value block.

/VERSION Displays the executable’s version string and the copyright notice.

3–12 Server Account and Environment

Parameter/Qualifier Description

/[NO]WATCH[=..] Controls the use of the WATCH reporting facility. See ‘‘WASD
Web Services - Features and Facilities’’

Server Account and Environment 3–13

Chapter 4

Configuration Considerations

WASD has a global configuration, which applies characteristics to the entire running server, as
well as per-service (virtual server) and conditional configuration, which applies characteristics
or behaviours to specific requests. All configuration is provided via files located by logical
names.

Configuration Files

Name Scope Description

WASD_CONFIG_AUTH loadable request authorization control

WASD_CONFIG_GLOBAL global global server configuration

WASD_CONFIG_MAP loadable request processing control

WASD_CONFIG_MSG global provides server messages

WASD_CONFIG_SERVICE global specifies services (virtual servers)

Simple editing of these files change the configuration. Comment lines may be included by
prefixing them with the hash (‘‘#’’) character. Comment lines prefixed with a quote and
then a hash (‘‘!#’’) are displayed in Server Admin reports and are WATCHable during rule
proceessing. Configuration file directives are not case-sensitive. Any changes to global
configuration file can only be enabled by restarting the HTTPd process using the following
command on the server system.

$ HTTPD /DO=RESTART

Changes to request mapping or authorization configuration files also can be dynamically
reloaded into the running server using the administration command-line interface.

$ HTTPD /DO=MAP=LOAD
$ HTTPD /DO=AUTH=LOAD

Configuration Considerations 4–1

Changes to configuration files can be validated at the command-line before reload or restart.
This detects and reports any syntactical and fatal configuration errors but of course cannot
check the intent of the rules.

$ HTTPD /DO=AUTH=CHECK
$ HTTPD /DO=CONFIG=CHECK
$ HTTPD /DO=GLOBAL=CHECK
$ HTTPD /DO=MAP=CHECK
$ HTTPD /DO=MSG=CHECK
$ HTTPD /DO=SERVICE=CHECK

The config check sequentially processes each of the authorization, global, mapping, message
and service configuration files.

If additional server startup qualifiers are required to enable specific configuration features
then these must also be provided when checking. For example:

$ HTTPD /DO=AUTH=CHECK /SYSUAF /PROFILE

A server’s currently loaded configuration can be interrogated from the Server Administration
menu (see ‘‘WASD Web Services - Features and Facilities’’).

4.1 Include File Directive
WASD uses multiple configuration files for a server and its site, each one providing for a
different functional aspect . . . configuration, virtual services, path mapping, authorization,
etc. Generally these configuration files are ‘‘flat’’, with all required directives included in a
single file. This provides a simple and straight-forward approach suitable for most sites and
allows for the provision of Server Administration page online configuration of several aspects.

It is also possible to build site configurations by including the contents of referenced files.
This may provide a structure and flexibility not possible using the flat-file approach. All
WASD configuration files allow the use of an [IncludeFile] directive. This takes a VMS file
specification parameter. The file’s contents are then loaded and processed as if part of the
parent configuration file. These included files are allowed to be nested to a depth of two (i.e.
the configuration file can include a file which may then include another file).

The following is an example used to build up the mapping rules for four virtual services
supported on the one server.

WASD_CONFIG_MAP

[[alpha.site.com]]
[IncludeFile] WASD_ROOT:[LOCAL]MAP_ALPHA_80.CONF
[[alpha.site.com:443]]
[IncludeFile] WASD_ROOT:[LOCAL]MAP_ALPHA_443.CONF

[[beta.site.com]]
[IncludeFile] WASD_ROOT:[LOCAL]MAP_BETA_80.CONF
[[beta.site.com:443]]
[IncludeFile] WASD_ROOT:[LOCAL]MAP_BETA_443.CONF

[[*]]
[IncludeFile] WASD_ROOT:[LOCAL]MAP_COMMON.CONF

Note
Such configurations cannot be managed using Server Administration facility (see

4–2 Configuration Considerations

‘‘WASD Web Services - Features and Facilities’’). Files containing [IncludeFile]
directives are noted during server startup and if an Server Administration page
configuration interface is accessed where this would be a problem an explanatory
message and warning is provided. A configuration can still be saved but the resulting
configuration will be a flat-file representation of the server configuration, not the
original hierarchical one.

4.2 Site Organisation
It is recommended that the server distribution tree and any document and other

web-specific data areas be kept separate and distinct.

The former in WASD_ROOT:[000000], the latter perhaps in something like WEB:[000000].
This logical device could be provided with the following DCL introduced into the site or server
startup procedures:

$ DEFINE /SYSTEM /TRANSLATION=CONCEALED WEB DKA0:[WEB.]

See Section 12.2 for further information on the use of logical names in locating and defining
the content and structure of a site.

Note that logical device names like this need not appear in in the structure of the Web site.
The root of the Web-accessible path can be concealed using a final mapping rule similar to
the following

pass /* /web/*

which simply defaults anything else to that physical area. Of course if that anything else
needs to exist then it must be located in that physical area.

Mapping rules are the tools used to build a logical structure to a site from the physical area,
perhaps multiple areas, used to house the associated files. The logical organisation of served
data is largely hierarchical, organised under the Web-server path root, and is achieved via
two mechanisms.

1. The natural tree structure provided by a hierarchical file system.

2. The logical hierarchy possible using rules within the mapping file to place disparate
physical areas into a single logical structure.

Physically distinct areas are used for good physical reasons (e.g. the area can best be hosted
on a task-local disk), for historical reasons (e.g. the area existed before any Web environment
existed) or for reasons of convenience (e.g. lets put this where access controls already allow
the maintainers to manage it).

There are no good reasons for having site-specific documents integrated into the

package directory structure!

All site-served files should be located in an autonomous, dedicated area or areas. The only
reason to place script files into WASD_ROOT:[CGI-BIN] or WASD_ROOT:[architecture_BIN]
is that the script script is traditionally accessible via a /cgi-bin/ path or that the site is a small
and/or low usage environment where this directory is conveniently available for the few extra
scripts being made available.

Configuration Considerations 4–3

For any significant site (size that as best suits your perception), or for when a specific software
system or systems is being built or exists and it is being ‘‘Web-ified’’, design that software
system as you would be any other. That is place the documentation in one directory are,
executables and support procedures in their own, management files in another, data in yet
another area, etc. Then make those portions that are required to be accessible via the
Web interface accessible via the logical associations afforded through the use of the server’s
mapping rules (Chapter 12). Of course existing areas that are to be now made available via
the Web can be mapped in the same way. This includes the active components - executable
scripts. There is no reason (apart from historical) why the /cgi-bin/ path should be used to
activate scripts associated with a dedicated software system. Use a specific and unique path
for scripts associated with each such system.

When making a directory structure available via the Web care must be taken that only the
portions required to be accessed can be. Other areas should or must not be accessible. The
server process can only access files that are world-accessible, it is specifically granted access
via VMS protection mechanisms (e.g. ACLs), or that the individual SYSUAF-authorized
accessor can access and which have specifically been made available via server authorization
rules. Use the recommendations in Section 5.2 as guidlines when designing your own site’s
protections and permissions.

Document Root

A particular area of the file system may be specified as the root of a particular (virtual) sites
documents. This is done using the WASD_CONFIG_MAP SET map=root=<string> mapping
rule. After this rule is applied all subsequent rules have the specified string prefixed to
mapped strings before file-system resolution.

For example, the following WASD_CONFIG_MAP rule set

[[the.virtual.site:*]]

pass /*/-/* /wasd_root/runtime/*/*
/wasd_root/* /wasd_root/*

set * map=root=/dka0/the_site

exec /cgi-bin/* /cgi-bin/*
pass /* /*
fail *

when applied to the following request URLs results in the described mappings being applied.

http://the.virtual.site/doc/example.txt

access to the document represented by file

DKA0:[THE_SITE.DOC]EXAMPLE.TXT

With the request for a directory icon using

http://the.virtual.site/-/httpd/file.gif

access to the image represented by file

WASD_ROOT:[RUNTIME.HTTPD]FILE.GIF

4–4 Configuration Considerations

And a request for a script using

http://the.virtual.site/cgi-bin/example.php

activation of the script represented by the file

DKA0:[THE_SITE.CGI-BIN]EXAMPLE.PHP

Care must be taken in getting the sequence of mapping rules correct for access to non-site
resources before actually setting the document root which then ties every other resource to
that root.

4.3 Virtual Services
A single WASD server process is capable of concurrently supporting the same host name on
different port numbers and a number of different host names (DNS aliased or multi-homed)
using the same port number. This capability is generally known as a virtual server. There is
no design limitation on the number of these services that WASD will concurrently support.
Virtual services offer versatile and powerful multi-site capabilities using the one system and
server. Service determination is based on the contents of the request’s ‘‘Host:’’ header field.
If none is present it defaults to base service for the interface’s IP address and port.

WASD_CONFIG_SERVICE

If the logical name WASD_CONFIG_SERVICE is defined the deprecated WASD_CONFIG_
GLOBAL [Service] directive is not used (see below).

See Chapter 9 for further detail.

WASD_CONFIG_GLOBAL [Service] (Deprecated)

Using the [Service] WASD_CONFIG_GLOBAL configuration parameter or the /SERVICE
qualifier the server creates an HTTP service for each specified. If the host name is omitted
it defaults to the local host name. If the port is omitted it defaults to 80. The first port
specified in the service list becomes the ‘‘administration’’ port of the server, using the local
host name, appearing in administration reports, menus, etc. This port is also that specified
when sending control commands via the /DO= qualifier.

This rather contrived example shows a server configured to provide four services over two
host names.

[Service]
alpha.example.com
alpha.example.com:8080
beta.example.com
beta.example.com:8000

Note that both the WASD_CONFIG_SERVICE configuration file (see Chapter 9) and the
/SERVICE= command-line qualifier override this directive.

Configuration Considerations 4–5

4.3.1 [[virtual-server]]

The essential profile of a site is established by its mapped resources and any authorization
controls, the WASD_CONFIG_MAP and WASD_CONFIG_AUTH configuration files respec-
tively, and these two files support directives that allow configuration rules to be applied to
all virtual services (i.e. a default), to a host name (all ports), or to a single specified service
(host name and specific port).

To restrict rules to a specified server (virtual or real) add a line containing the server host
name, and optionally a port number, between double-square brackets. All following rules will
be applied only to that service. If a port number is not present it applies to all ports for that
service name, otherwise only to the service using that port. To resume applying rules to all
services use a single asterisk instead of a host name. In this way default (all service) and
server-specific rules may be interleaved to build a composite environment, server-specific yet
with defaults. Note that service-specific and service-common rules may be mixed in any order
allowing common rules to be shared. This descriptive example shows a file with one rule per
line.

just an example
this rule applies to all services
so does this
and this one
[[alpha.example.com]]
this one however applies only to ALPHA, but to all ports
as indeed does this
[[beta.example.com:8000]]
now we switch to the BETA service, but only port 8000
another one only applying to BETA
and a third
[[*]]
now we have a couple default rules
that again apply to all servers

Service Conditionals
As a virtual service specification acts as a conditional on subsequent rule application
they must be considered a fundamental element of Chapter 7. Service conditionals
also impose a boundary on the scope of if..endif constructs.

Both the mapping and authorization modules report if rules are provided for services that are
not configured for the particular server process (i.e. not in the server’s [Service] or /SERVICE
parameter list). This provides feedback to the site administrator about any configuration
problems that exist, but may also appear if a set of rules are shared between multiple
processes on a system or cluster where processes deliver differing services. In this latter
case the reports can be considered informational, but should be checked initially and then
occasionally for misconfiguration.

Note
There is a difference when specifying virtual services during service creation and when
using them to apply mapping, etc. When creating a service the scheme (or protocol,
e.g. ‘‘http:’’, ‘‘https:’’) needs to be specified so the server can apply the correct protocol
to connections accepted at that service. Once a service is created however, it becomes
defined by the host-name and port supplied when created. Only one scheme (protocol)
can be supported on any one host-name/port instance and so it becomes unnecessary

4–6 Configuration Considerations

to provide it with mapping rules, etc. The server will complain in instances where it
is redundant.

4.3.2 Unknown Virtual Server

If a service is not configured for the particular host address and port of a request one of two
actions will be taken.

1. If the configuration directive [ServiceNotFoundURL] is set the request will be redirected
to the specified URL. This should contain a specific host name, as well as message page.
For the default page use:

[ServiceNotFoundURL] //server.host.name/httpd/-/servicenotfound.html

2. If the above directive is not set the request is mapped using the default rules (e.g. [[*]]).
It is possible to specify a rule set containing a default rule for each virtual server. The
unmatched request is then handled by a fallback rule, as illustrated in the following.

pass /*/-/admin/*
pass /*/-/* /wasd_root/runtime/*/*
exec /cgi-bin/* /cgi-bin/*
[[virtual1.host.name]]
/* /web/virtual1/*
/ /web/virtual1/
[[virtual2.host.name]]
/* /web/virtual2/*
/ /web/virtual2/
[[virtual3.host.name]]
/* /web/virtual3/*
/ /web/virtual3/
[[*]]
/* /web/servicenotfound.html

This applies to dotted-decimal addresses as well as alpha-numeric. Therefore if there is a
requirement to connect via a numeric IP address such a service must have been configured.

Note also that the converse is possible. That is, it’s possible to configure a service that the
server cannot ever possibly respond to because it does not have an interface using the IP
address represented by the service host.

4.4 GZIP Encoding
WASD can apply GZIP compression (gzip, deflate) to any suitable response body and can
accept similarly compressed request bodies. It dynamically maps required functions from a
ZLIB shareable image. Originally developed against the ZLIB v1.2.n port by Jean-François
Piéronne, the VMS-PORTS (GNV) LIBZ package is also supported.

WASD dynamically maps the associated shareable image by successively accessing the
(optionally defined) WASD_LIBZ_SHR32 logical name, then GNV$LIBZSHR32, then LIBZ_
SHR32, before reporting GZIP unavailable.

The shareable image must be INSTALLed (without any particular privileges) before it can
be activated by the privileged WASD HTTPd image (the WASD startup will automatically
do this if necessary). The server process log and the Server Administration page, Statistics
Report panel named Environment contains the version activated or a VMS status message if
an error was encountered.

Configuration Considerations 4–7

4.4.1 Response Encoding

The WASD_CONFIG_GLOBAL directive [GzipResponse] controls whether this feature is
enabled for the gzip content-encoding of suitable response bodies. This directive requires
at least one parameter, the compression level in the range 1..9. Smaller values provide faster
but poorer compression ratios while larger values better compression at the cost of more CPU
cycles and latency. This corresponds to the GZIP utility’s -1..-9 CLI switches. Two optional
parameters could allow ZLIB’s ’memLevel’ and ’windowBits’ to be adjusted by ZLIB afficiendos
(level[,memory,window]). A small amount of experimentation by this author indicates minor
changes in memory usage and compression ratio by fiddling with these.

Be aware that GZIP encoding is memory intensive. From 132kB to 265kB has been observed
per compressing request (WATCH provides this in a summary line). These values apply across
a wide range of transfer sizes (from kilobytes to tens of megabytes). It also is CPU intensive

and adds response latency, though that might be well be offset by significant reductions in
transfer time on the Internet or other slower, non-intranet infrastructures. Text content
compression has been observed from 30% to 10% of the original file size (even down to 1% in
the case of the extremely redundant content of [EXAMPLE]64K.TXT). VMS executables (for
want of another binary test case) at around 40%. In other words, GZIP encoding may not be
suitable or efficient for every site or every request!

Once enabled WASD will GZIP the responses for all suitable contents provided the client
accepts the encoding and the response is not one of the following:

• less than 1400 bytes (no point in the overhead)

• already content-encoded script output

• a compressed image (e.g. GIF, JPEG, PNG, etc)

• a video stream (presumably already compressed, e.g. MPEG)

• a compressed audio stream

• a PDF file

• a Shockwave Flash file

• an obviously compressed application stream (e.g. GZIP, ZIP, JAR)

Additional control may be exercised with the following path SETings:

• ‘‘response=GZIP=all’’, matching paths will always have GZIP encoding performed (the
above constraints still apply)

• ‘‘response=GZIP=none’’, matching paths will never have GZIP encoding

• ‘‘response=GZIP=<integer>’’, responses with content-lengths greater than the specified
number of kilobytes will be GZIP content-encoded (if the content-length cannot be
determined it will NOT not encoded and the above constraints still apply)

Using path settings GZIP compression may be disabled for specified file types (apart from
those already suppressed as described above).

set **.myzip response=gzip=none

4–8 Configuration Considerations

A script using the Script-Control: X-content-encoding-gzip=0 CGI response header can sim-
ilarly suppress GZIP compression of its output if required. See ‘‘Scripting Overview’’ for
further detail.

Flush Period

By default GZIP encoding flushes the internal buffer only when full. Most commonly this is
not an issue because of high rates of output. However with slow output sources, such as from
some classes of script, this can result in considerable latency before a client sees an initial
response, and then between transmission of further output. By default output is initially
flushed after 5 seconds and thereafter at a maximum interval of 15 seconds. The WASD_
CONFIG_GLOBAL directive [GzipFlushSeconds] allows this period to be adjusted.

4.4.2 Request Encoding

Decoding of GZIP content-encoded request bodies is enabled using the WASD_CONFIG_
GLOBAL directive [GzipAccept]. Enabling this using a value 15 (or 1) results in the server
advertising its acceptance of GZIPed requests using the "Accept-Encoding: gzip, deflate"
response header. Requests containing bodies GZIP compressed will have these decoded as
they are read from the client and before further processing, such as the upload of files into
server accessible file-system space. This decoding is optional and not the default with DCL
and DECnet script processing. That is, a request body will be passed to the script still encoded
unless specific mapping directs otherwise. Decoding by the server into the original data prior
to transfering to the script can be enabled for all or selected scripts using the following path
settings:

• ‘‘script=body=decode’’, script gets the decoded stream

• ‘‘script=body=NOdecode’’, script gets the raw, encoded stream (default)

Note that scripts need to be specially aware of both GZIP encoded bodies and those already
decoded by the server. In the first case the stream must be read to the specified content-
length and then decoded. In the second case, a content-length cannot be provided by the
server (without unencoding the entire stream ahead of time it cannot predict the final size).
Where the server is to decode the request body before transfering it to the script it changes
the CGI variable CONTENT_LENGTH to a single question-mark ("?"). Scripts may use this
to detect the server’s intention and then must ignore any transfer-encoding and/or content-
encoding header information and read the request body until end-of-file is received.

GZIP decoding (decompression) is understandably much less memory and CPU intensive.
Experimentation indicates it does not contribute significantly to latency either.

4.5 Request Throttling
Request ‘‘throttling’’ is a term adopted to describe controlling the number of requests that can
be processing against any specified path at any one time. Requests in excess of this value are
First-In-First-Out (FIFO) queued, up to an optional limit, waiting for a currently processing
request to conclude allowing the next queued request to resume processing. This is primarily
intended to limit concurrent resource-intensive script execution but could be applied to any
resource path. Here’s one dictionary description.

Configuration Considerations 4–9

throttle n 1: a valve that regulates the supply of fuel to the engine [syn: accelerator, throttle
valve] 2: a pedal that controls the throttle valve; ‘‘he stepped on the gas’’ [syn: accelerator,
accelerator pedal, gas pedal, gas, gun] v 1: place limits on; ‘‘restrict the use of this parking
lot’’ [syn: restrict, restrain, trammel, limit, bound, confine] 2: squeeze the throat of; ‘‘he tried
to strangle his opponent’’ [syn: strangle, strangulate] 3: reduce the air supply; of carburetors
[syn: choke]

This is applied to a path (or paths) using the WASD_CONFIG_MAP mapping SET THROT-
TLE= rule (Section 12.5.5). The general format is

set path throttle=n1[/u1][,n2,n3,n4,t/o1,t/o2]
set path throttle=from[/per-user][,to,resume,busy,t/o-queue,t/o-busy]

where

• n1 sets the number of concurrent requests before queuing begins (the number of process-
ing requests becomes static and the number of queued requests increases)

• u1 is separated from the n1 value by a forward-slash and limits the concurrent request
any one authenticated user can process. Even though the n1 value may allow processing
if u1 would be exceeded the request is queued.

• n2 is the concurrent requests before FIFO queuing begins, meaning each new request
is put onto the queue but at the same the first-in request is taken off the queue for
processing (the number of queued requests becomes static and the number of processing
requests increases)

• n3 puts a limit on FIFO queuing (the number of queued requests again increases and the
number of processing requests becomes static)

• n4 is an absolute limit for concurrent requests against the path (a 503 ‘‘server too busy’’
status is immediately generated)

• t/o1 is the maximum period for queued requests before they are processed (if not
constrained by n3)

• t/o2 is the maximum period for queued requests before a 503 ‘‘server too busy’’ response
is returned, it begins immediately or following the expiry of any t/o1

One way to read a throttle rule is ‘‘begin to throttle (queue) requests from the n1 value up to
the n2 value, after which the queue is FIFOed up to the n3 value when it resumes queuing-
only, up until the busy n4 value’’.

Each integer represents the number of concurrent requests against the throttle rule path.
Parameters not required may be specified as zero or omitted in a comma-separated list. The
schema of the rule requires that each successive parameter be larger than that preceding it.
This basic consistency check is performed when the rule is loaded.

For any rule the possible maximum number of requests that can be processed at any one time
may be simply calculated through the addition of the n1 value to the difference of the n3 and
n2 values (i.e. max = n1 + (n3 - n2)). The maximum concurrently queued as the difference of
the n4 and the maximum concurrently processed.

A comprehensive throttle statistics report is available from the Server Administration facil-
ity.

4–10 Configuration Considerations

Per-User Throttle

If the concurrent processing value (n1) has a second, slash-delimited integer, this serves
to limit the number of authenticated user-associated requests that can be concurrently
processing.

When a request is available for processing the associated remote user name is checked for
activity against the queue. The u1 (or per-user throttle value) is a limit on that user name’s
concurrent processing. If it would exceed the specified value the request is queued until the
number of requests processing drops below the u1 value. All other values in the throttle rule
are applied as for non-per-user throttling.

Note
The user name used for comparison purposes is the authenticated remote user (same
as the CGI variable value REMOTE_USER). This can be for any realm. Of course the
same string can be used to represent different users within different authentication
realms and so care should be exercised that per-user throttling does not span realms
otherwise unexpected (and incorrect) throttling may occur for distinct users.

If an unauthenticated request is matched against the throttle rule (i.e. there is no authoriza-
tion rule matching the request path) the client has a 500 (server error) response returned.
Obviously per-user throttling must have a remote user name to throttle against and this is a
configuration issue.

Examples

1. throttle=10

Requests up to 10 are concurrently processed. When 10 is reached futher requests are
queued to server capacity.

2. throttle=10,20

Concurrent requests to 10 are processed immediately. From 11 to 20 requests are queued.
After 20 all requests are queued but also result in a request FIFOing off the queue to be
processed (queue length is static, number being processed increases to server capacity).

3. throttle=15,30,40

Concurrent requests up to 15 are immediately processed. Requests 16 through to 30 are
queued, while 31 to 40 requests result in the new requests being queued and waiting
requests being FIFOed into processing. Concurrent requests from 41 onwards are again
queued, in this scenario to server capacity.

4. throttle=10,20,30,40

Concurrent requests up to 10 are immediately processed. Requests 11 through to 20 will
be queued. Concurrent requests from 21 to 30 are queued too, but at the same time
waiting requests are FIFOed from the queue (resulting in 10 (n1) + 10 (n3-n2) = 20 being
processed). From 31 onwards requests are just queued. Up to 40 concurrent requests
may be against the path before all new requests are immediately returned with a 503
"busy" status. With this scenario no more than 20 can be concurrently processed with 20
concurrently queued.

5. throttle=10,,,30

Configuration Considerations 4–11

Concurrent requests up to 10 are processed. When 10 is reached requests are queued up
to request 30. When request 31 arrives it is immediately given a 503 "busy" status.

6. throttle=10,20,30,40,00:02:00

This is basically the same as scenario 4) but with a resume-on-timeout of two minutes.
If there are currently 15 (or 22 or 28) requests (n1 exceeded, n3 still within limit) the
queued requests will begin processing on timeout. Should there be 32 processing (n3 has
reached limit) the request will continue to sit in the queue. The timeout would not be
reset.

7. throttle=15,30,40,,,00:03:00

This is basically the same as scenario 3) but with a busy-on-timeout of three minutes.
When the timeout expires the request is immediately dequeued with a 503 "busy" status.

8. throttle=10/1

Concurrent requests up to 10 are processed. The requests must be of authenticated users.
Each authenticated user is allowed to execute at most one concurrent request against this
path. When 10 is reached, or if less than 10 users are currently executing requests, then
further requests are queued to server capacity.

9. throttle=10/1,,,,,00:03:00

This is basically the same as scenario 8) but with a busy-on-timeout of three minutes.
When the timeout expires any requests still queued against the user name is immediately
dequeued with a 503 "busy" status.

Mapping Reload

Throttling is applied using mapping rules. The set of these rules may be changed within an
executing server using map reload functionality. This means the number of, and/or contents
of, throttle rules may change during server execution. The throttle functionality needs to
be independent of the the mapping functionality (requests are processed independently of
mapping rules once the rules have been applied). After a mapping reload the contents of the
throttle data structures may be at variance with the constraints currently executing requests
began processing under.

This should have little deleterious effect. The worst case is mis-applied constraints on the
execution limits of changed request paths, and slightly confusing data in the Throttle Report.
This quickly passes as requests being processed under the previous throttle constraints
conclude and an entirely new collection of requests created using the constraints of the
currently loaded rules are processed.

4.6 Client Concurrency
The ‘‘client_connect_gt:’’ mapping conditional (Chapter 7) attempts to allow some measure-
ment of the number of requests a particular client currently has being processed. Using this
decision criterion appropriate request mapping for controlling the additional requests can be
undertaken. It is not intended to provide fine-grained control over activities, rather just to
prevent a single client using an unreasonable proportion of the resources.

4–12 Configuration Considerations

For example. If the number of requests from one particulat client looks like it has got out
of control (at the client end) then it becomes possible to queue (throttle) or reject further
requests. In WASD_CONFIG_MAP

if (client_connect_gt:15) set * throttle=15

if (client_connect_gt:15) pass * "503 Exceeding your concurrency limit!"

While not completely foolproof it does offer some measure of control over gross client
concurrency abuse or error.

4.7 Content-Type Configuration
HTTP uses an implementation of the MIME (Multi-purpose Internet Mail Extensions)
specification for identifying the type of data returned in a response. A MIME content-type
consists of a plain text string describing the data as a type and slash-separated subtype, as
illustrated in the following examples:

text/html
text/plain
image/gif
image/jpeg
application/octet-stream

The content-type is returned to the client as part of the HTTP response, the client then using
this information to correctly process and present the data contained in that response.

4.7.1 Adding Content-Types

In common with most HTTP servers WASD uses a file’s suffix (extension, type, e.g. ‘‘.HTML,
‘‘.TXT’’, ‘‘.GIF’’’’ to identify the data type within the file. The [AddType] directive is used during
configuration to bind a file type to a MIME content-type. To make the server recognise and
return specific content-types these directives map file types to content-types.

With the VMS file system there is no effective file characteristic or algorithm for identifying
a file’s content without an exhaustive examination of the data contained there-in . . . a very
expensive process (and probably still inconclusive in many cases), hence the reliance on the
file type.

Note
When adding a totally new content-type to the configuration be sure also to bind an
icon to that type using the [AddIcon] directive (see below). If this is not done the
default icon specified by [AddDefaultIcon] is displayed. If that is not defined then a
directory listing shows ‘‘[?]’’ in place of an icon.

Mappings using [AddType] look like these.

[AddType]
.html text/html Web Markup Language
.txt text/plain plain text
.gif image/gif image (GIF)
.hlb text/x-script /Conan VMS Help library
.decw$book text/x-script /HyperReader Bookreader book
* internal/x-unknown application/octet-stream

Configuration Considerations 4–13

4.7.2 MIME.TYPES

To allow the server to share content-type definitions with other MIME-aware applications,
and for WASD scripts to be able to perform their own mapping on a shared understanding of
MIME content it is possible to move the file suffix to content-type mapping from a collection
of [AddType]s in WASD_CONFIG_GLOBAL to an external file. This file is usually named
MIME.TYPES and is specified in WASD_CONFIG_GLOBAL using the [AddMimeTypesFile]
directive.

Mappings using MIME.TYPES look like these.

MIME type Extension
application/msword doc
application/octet-stream bin dms lha lzh exe class
application/oda oda
application/pdf pdf
application/postscript ai eps ps
application/rtf rtf

A leading content-type is mapped to single or multiple file suffixes. A general MIME.TYPES
file commonly has content-types listed with no corresponding file suffix. These are ignored
by WASD. Where a file suffix is repeated during configuration the latter version completely
supercedes the former (with the Server Administration page showing an italicised and struck-
through content-type to help identify duplicates).

To allow the configuration information used by the server to generate directory listings
with additional detail, WASD-specific extensions to the standard MIME.TYPES format are
provided. These are ‘‘hidden’’ in comment structures so as not to interfere with non-WASD
application use. All begin with a hash then an exclamation character (‘‘#!’’) then another
reserved character indicating the purpose of the extension. Existing comments are unaffected
provided the second character is anything but an exclamation mark!

• #! file description

A space reserved character indicates following free-form text, used as the file type
description displayed on the far right of directory listings.

• #!/cgi-bin/script

A forward-slash introduces an auto-script specification. An auto-script is automatically
activated by the server to process and display a corresponding file’s contents. These are
sometimes refered to as presentation scripts.

• #![alt] /path/to/icon.gif

A left-square-bracket is used for icon specifications. These are actually mapped against
the following content-type, not file suffix, and so only need to be specified once for
each content-type in the file. This behaves in a similar fashion to [AddIcon], only the
components are reversed.

• #!!

The two exclamation marks can be used to indicate a MIME type intended for WASD
only. The can be ignored by non-WASD applications.

4–14 Configuration Considerations

• #!+

An exclamation mark then a plus symbol indicates an FTP transfer mode directive. One
of three characters may follow the plus. An ‘‘A’’ indicates that this file type should be
FTP transfered in ASCII mode. An ‘‘I’’ or a ‘‘B’’ indicates that this file type should be FTP
transfered in Image (binary) mode.

• #!%

A percentage is ignored by WASD. This is reserved for local (non-WASD) viewers.

These directives are placed following the MIME-type entry they apply to. An example of
the contents of a MIME.TYPES file with various WASD extensions.

MIME type Extension
application/msword doc
#! MS Word document
#![DOC] /httpd/-/doc.gif
application/octet-stream bin dms lha lzh exe class
#! binary content
#![BIN] /httpd/-/binary.gif
application/oda oda
application/pdf pdf
application/postscript ai eps ps
#! Adobe PostScript
#![PS.] /httpd/-/postscript.gif
#!+A
application/rtf rtf
#! Rich Text Format
#![RTF] /httpd/-/rtf.gif
application/x-script bks decw$bookshelf
#! DEC Bookshelf
#!/cgi-bin/hypershelf
application/x-script bkb decw$book
#![BKR] /httpd/-/script.gif
#! DEC Book
#!/cgi-bin/hyperreader

Other reserved characters have been specified for development purposes but are not (perhaps
currently) employed by the HTTP server.

• #!< html marked-up text

A less-than symbol indicates HTML marked-up text.

• #!# blah blah blah

##! rhubarb rhubarb

Two combinations of hash and exclamation characters provide for WASD-specific com-
ments.

4.7.3 Unknown Content-Types

If a file type is not recognised (i.e. no [AddType] or [AddMimeTypesFile] mapping correspond-
ing to the file type) then by default WASD identifies its data as application/octet-stream (i.e.
essentially binary data). Most browsers respond to this content-type with a download dialog,
allowing the data to be saved as a file. Most commonly these unknown types manifest them-
selves when authors use ‘‘interesting’’ file names to indicate their purpose. Here are some
examples the author has encountered:

Configuration Considerations 4–15

README.VMS
README.1ST
READ-ME.FIRST
BUILD.INSTRUCTIONS
MANUAL.PT1 (.PT2, . . .)

If the site administrator would prefer another default content-type, perhaps ‘‘text/plain’’ so
that any unidentified files default to plain text, then this may be configured by specifying
that content-type as the description of the catch-all file type entry. Examples (use one of):

[AddType]
* internal/x-unknown
* internal/x-unknown application/octet-stream
* internal/x-unknown text/plain
* internal/x-unknown something/else-entirely

It is the author’s opinion that unidentified file types should remain as binary downloads, not
‘‘text’’ documents, which they are probably more often not, but it’s there if wanted.

4.7.4 Explicitly Specifying Content-Type

When accessing files it is possible to explicitly specify the identifying content-type to be
returned to the browser in the HTTP response header. Of course this does not change
the actual content of the file, just the header content-type! This is primarily provided to
allow access to plain-text documents that have obscure, non-‘‘standard’’ or non-configured file
extensions.

It could also be used for other purposes, ‘‘forcing’’ the browser to accept a particular file as a
particular content-type. This can be useful if the extension is not configured (as mentioned
above) or in the case where the file contains data of a known content-type but with an
extension conflicting with an already configured extension specifying data of a different
content-type.

Enter the file path into the browser’s URL specification field ("Location:", "Address:"). Then,
for plain-text, append the following query string:

?httpd=content&type=text/plain

For another content-type substitute it appropriately. For example, to retrieve a text file in
binary (why I can’t imagine :-) use

?httpd=content&type=application/octet-stream

This is an example:

online demonstration

It is posssible to "force" the content-type for all files in a particular directory. Enter the path
to the directory and then add

?httpd=index&type=text/plain

(or what-ever type is desired). Links to files in the listing will contain the appropriate
‘‘?httpd=content&type=...’’ appended as a query string.

This is an example:

online demonstration

4–16 Configuration Considerations

4.8 Language Variants
Language-specific variants of a document may be configured to be served automatically and
transparently. This is organized as a basic file and name with language-specific variant
indicated by an additional ‘‘tag’’, one of ISO language abbreviations used by the ‘‘Accept-
Language:’’ request header field, e.g. en for English, fr for French, de for German, ru for
Russian, etc.

Two variants of the basic file specification are possible; file name (the default) and file type.
Hence if the basic file name is EXAMPLE.HTML then specifically German, English, French
and Russian language versions in the directory would be either

EXAMPLE.HTML
EXAMPLE_DE.HTML
EXAMPLE_EN.HTML
EXAMPLE_FR.HTML
EXAMPLE_RU.HTML

or

EXAMPLE.HTML
EXAMPLE.HTML_DE
EXAMPLE.HTML_EN
EXAMPLE.HTML_FR
EXAMPLE.HTML_RU

A path must be explicitly SET using the accept=lang mapping rule as containing language
variants. As searching for variants is a relatively expensive operation the rule(s) applying
this functionality should be carefully crafted. The accept=lang rule accepts an optional default
language representing the contents of the basic, untagged files. This provides an opportunity
to more efficiently handle requests with a language first preference matching that of the
default. In this case no variant search is undertaken, the basic file is simply served. The
following example sets a path to contain files with a default language of French and possibly
containing other language variants.

set /web/doc/* accept=lang=(default=fr)

In this case the behaviour would be as follows. With the default language set to ‘‘fr’’ a request’s
‘‘Accept-Language:’’ field is initially processed to check if the first preference is for ‘‘fr’’. If it
is then there is no need for further accept language processing and the basic file is returned
as the response. If not then the directory is searched for other files matching the EXAMPLE_
.HTML specification. All files matching this wildcard have the ‘‘’’ portion (e.g. ‘‘EN’’, ‘‘FR’’,
‘‘DE’’, ‘‘RU’’) added to a list of variants. When the search is complete this list is compared
to the request’s ‘‘Accept-Language:’’ list. The first one to be matched has the contents of the
corresponding file returned. If none are matched the default version would be returned.

This example of the behaviour is based on the contents of the directory described above. A
request that specifies

Accept-Language: fr,de,en

will have EXAMPLE.HTML returned (without having searched for any other variants). For
a request specifying

Configuration Considerations 4–17

Accept-Language: ru,en

then the EXAMPLE_RU.HTML file is returned, and if no ‘‘Accept-Language:’’ is supplied
with the request EXAMPLE.HTML would be returned. One or other file is always returned,
with the default, non-language file always the fallback source of data. If it does not exist and
no other language variant is selected the request returns a 404 file-not-found error.

Content-Type

When using the accept=lang=(variant=type) form of the rule (i.e. the variant is placed on the
file type rather than the default file name) each possible file extension must also must have
its content-type made known to the server. Using the example above the variants would need
to be configured in a similar way to the following.

[AddType]
.HTML "text/html; charset=ISO-8859-1" Web Markup Language
.HTML_DE "text/html; charset=ISO-8859-1" HTML (German)
.HTML_EN "text/html; charset=ISO-8859-1" HTML (English)
.HTML_FR "text/html; charset=ISO-8859-1" HTML (French)
.HTML_RU "text/html; charset=koi8-r" HTML (Russian)

Non-Text Content

Normally only files with a content-type of ‘‘text/..’’ are subject to variant searching. If the rule
path includes a file type then those files matching the rule are also variant-searched. In this
way images, audio files, etc., may also have language-specific versions supplied transparently.
The following illustrates this usage

set /web/doc/*.jpg accept=lang=(default=fr)
set /web/doc/*.wav accept=lang=(default=fr)

4.9 Character Set Conversion
The default character set sent in the response header for text documents (plain and HTML)
is set using the [CharsetDefault] directive and/or the SET charset mapping rule. English
language sites should specify ISO-8859-1, other Latin alphabet sites, ISO-8859-2, 3, etc.
Cyrillic sites might wish to specify ISO-8859-5 or KOI8-R, and so on.

Document and CGI script output may be dynamically converted from one character set to
another using the standard VMS NCS conversion library. The [CharsetConvert] directive
provides the server with character set aliases (those that are for all requirements the same)
and which NCS conversion function may be used to convert one character set into another.

document-charset accept-charset[,accept-charset..] [NCS-function-name[=factor]]

When this directive is configured the server compares each text response’s character set (if
any) to each of the directive’s document charset string. If it matches it then compares each of
the accepted charset (if multiple) to the request ‘‘Accept-Charset:’’ list of accepted characters
sets.

At least one doc-charset and one accept-charset must be present. If only these two are present
(i.e. no NCS-conversion-function) it indicates that the two character sets are aliases (i.e. the
same set of characters, different name) and no conversion is necessary.

4–18 Configuration Considerations

If an NCS-conversion-function is supplied it indicates that the document doc-charset can be
converted to the request ‘‘Accept-Charset:’’ preference of the accept-charset using the NCS
conversion function name specified.

A factor parameter can be appended to the conversion function. Some conversion functions
require more than one output byte to represent one input byte for some characters. The ’factor’
is an integer between 1 and 4 indicating how much more buffer space may be required for
the converted string. It works by allocating that many times more output buffer space than
is occupied by the input buffer. If not specified it defaults to 1, or an output buffer the same
size as the input buffer.

Multiple comma-separated accept-charsets may be included as the second component for either
of the above behaviours, with each being matched individually. Wildcard ‘‘*’’ and ‘‘%’’ may be
used in the doc-charset and accept-charset strings.

[CharsetConvert]
windows-1251 windows-1251,cp-1251
windows-1251 koi8-r windows1251_to_koi8r
koi8-r koi8-r,koi8
koi8-r windows-1251,cp-1251 koi8r_to_windows1251
koi8-r utf-8 koi8r_to_utf8=2

4.10 Error Reporting
By default the server provides its own internal error reporting facility. These reports may be
configured as basic or detailed on a per-path basis, as well as determining the basic ‘‘look-
and-feel’’. For more demanding requirements the [ErrorReportPath] configuration directive
allows a redirection path to be specified for error reporting, permitting the site administrator
to tailor both the nature and format of the information provided. A Server Side Include
document, CGI script or even standard HTML file(s) may be specified. Generally an SSI
document would be recommended for the simplicity yet versatility.

4.10.1 Basic and Detailed

Internally generated error reports are the most efficient. These can be delivered with two
levels of error information. The default is more detailed.

ERROR 404 - The requested resource could not be found.
Document not found ... /wasd_root/index.html
(document, bookmark, or reference requires revision)
Additional information: 1xx, 2xx, 3xx, 4xx, 5xx, Help

WASD/10.0.0 Server at www.example.com Port 80

There is also the more basic.

ERROR 404 - The requested resource could not be found.
Additional information: 1xx, 2xx, 3xx, 4xx, 5xx, Help

WASD/10.0.0 Server at www.example.com Port 80

These can be set per-server using the [ReportBasicOnly] configuration directive, or on a per-
path basis in the WASD_CONFIG_MAP configuration file. The basic report is intended for
environments where traditionally a minimum of information might be provided to the user
community, both to reduce site configuration information leakage but also where a general

Configuration Considerations 4–19

user population may only need or want the information that a document was either found or
not found. The detailed report often provides far more specific information as to the nature
of the event and so may be more appropriate to a more technical group of users. Either way
it is relatively simple to provide one as the default and the other for specific audiences. Note
that the detailed report also includes in page <META> information the code module and line
references for reported errors.

To default to a basic report for all but selected resource paths introduce the following to the
top of the WASD_CONFIG_MAP configuration file.

default is basic reports
set /* report=basic
set /internal-documents/* report=detailed
set /other/path/* report=detailed

To provide the converse, default to a detailed report for all but selected paths use the following.

default is detailed reports
set /web/* report=basic

Other Customization

The additional reference information included in the report may be disabled using the
appropriate WASD_CONFIG_MSG [status] message item. Emptying this message results
in an error report similar to the following.

ERROR 404 - The requested resource could not be found.

WASD/10.0.0 Server at www.example.com Port 80

The server signature may be disabled using the WASD_CONFIG_GLOBAL [ServerSignature]
configuration directive. This results in a minimal error report.

A simple approach to providing a site-specific ‘‘look-and-feel’’ to server reports is to customize
the [ServerReportBodyTag] WASD_CONFIG_GLOBAL configuration directive. Using this
directive report page background colour, background image, text and link colours, etc., may
be specified for all reports. It is also possible to more significantly change the report format
and contents (within some constraints), without resorting to the site-specific mechansims
refered to below, by changing the contents of the appropriate WASD_CONFIG_MSG [status]
item. This should be undertaken with care.

ERROR 404 - The requested resource could not be found.

4.10.2 Site Specific

Customized error reports can be generated for all or selected HTTP status status associated
with errors reported by the server using the WASD_CONFIG_GLOBAL [ErrorReportPath]
and WASD_CONFIG_SERVER [ServiceErrorReportPath] configuration directives. To explic-
itly handle all error reports specify the path to the error reporting mechanism (see description
below) as in the following example.

[ErrorReportPath] /httpd/-/reporterror.shtml

4–20 Configuration Considerations

To handle only selected error reports add the HTTP status codes following the report path. In
this example only 403 and 404 errors are explicitly handled, the rest remain server-generated.
This is particularly useful for static error documents.

[ErrorReportPath] /httpd/-/reporterror.shtml 403 404

To exclude selected error reports (and handle all others by default) add the HTTP status
codes preceded by a hyphen following the report path. In this example 401 and 500 errors
are server-generated.

[ErrorReportPath] /httpd/-/reporterror.shtml -401 -500

Site-specific error reporting works by internal redirection. When an error is reported the
original request is concluded and the request reconstructed using the error report path before
internally being reprocessed. For SSI and CGI script handlers error information becomes
available via a specially-built query string, and from that as CGI variables in the error report
context. One implication is the original request path and query string are no longer available.
All error information must be obtained from the error information in the new query string.

It is suggested with any use of this facility the reporting document(s) be located somewhere
local, probably WASD_ROOT:[RUNTIME.HTTPD], and then enabled by placing the appro-
priate path into the [ErrorReportPath] configuration directive.

[ErrorReportPath] /httpd/-/reporterror.shtml

Note that virtual services can subsequently have this path mapped to other documents (or
even scripts) so that some or all services may have custom error reports. For instance the
following arrangement provides each host (service) with an customized error report.

WASD_CONFIG_GLOBAL
[ErrorReportPath] /errorreport.shtml

WASD_CONFIG_MAP
[[alpha.example.com]]
pass /errorreport.shtml /httpd/-/alphareport.shtml
[[beta.example.com]]
pass /errorreport.shtml /httpd/-/betareport.shtml
[[gamma.example.com]]
pass /errorreport.shtml /httpd/-/gammareport.shtml

Using Static HTML Documents

Static HTML documents are a good choice for site-specific error messages. They are very
low overhead and are easily customizable. One per possible response error status code is
required. When providing an error report path including a ‘‘!UL’’ introduces the response
status code into the file path, providing a report path that includes a three digit number
representing the HTTP status code. A file for each possible or configured code must then be
provided, in this example for 403 (authorization failure), 404 (resource not found) and 502
(bad gateway/script).

[ErrorReportPath] /httpd/-/reporterror!UL.html 403 404 502

Configuration Considerations 4–21

This mapping will generate paths such as the following, and require the three specified to
respond to those errors.

/httpd/-/reporterror403.html
/httpd/-/reporterror404.html
/httpd/-/reporterror502.html

Using an SSI Document

SSI documents provide the versatility of dynamic report generation for but they do take time
and CPU for processing, and this may be a significant consideration on busy sites.

Three example SSI error report documents are provided. See WASD_ROOT:[EXAMPLE]REPORTERROR*.SHTML
The first providing a report identical with those internally generated, the second a small varia-
tion on this, and the third considerably different and with much less specific error information
(which some administrator’s may consider advantageous).

The following SSI variables are available specifically for generating error reports. The <!–
#printenv –> statement near the top of the file may be uncommented to view all SSI and CGI
variables available.

Error Variables

Variable Description

ERROR_LINE The HTTPd source code line from where the error was generated.

ERROR_MODULE The HTTPd source code module corresponding to the line
described above.

ERROR_REPORT A single HTML string providing a detailed error message.

ERROR_REPORT2 A single HTML comment providing more detailed VMS error
information if available

ERROR_REPORT3 A server-generated HTML string providing a brief explanation of
the error if available

ERROR_STATUS_CLASS Essentially the single hundreds digit from the status code (e.g. 4).

ERROR_STATUS_CODE The HTTP response status code representing the error (e.g. 404).

ERROR_STATUS_
EXPLANATION

The HTTP response status code descriptive meaning (e.g. ‘‘The
requested resource could not be found.’’)

ERROR_STATUS_TEXT The HTTP response status code abbreviated meaning (e.g. ‘‘Not
Found’’).

ERROR_STATUS_TYPE ‘‘basic’’ or ‘‘detailed’’.

ERROR_STATUS_URI The HTML-escaped URI of the request reporting the error.

FORM_ERROR_ . . . A series of CGI variables providing the sources for the above SSI
variables, as well as other general environment information.

4–22 Configuration Considerations

Using a Script

It is also possible to report using a script. The same error information is available via
corresponding CGI variables. The source code WASD_ROOT:[SRC.MISC]REPORTERROR.C
provides such an implementation example.

4.11 OPCOM Logging
Significant server events may be optionally displayed via a selected operator’s console and
recorded in the operator log. Various categories of these events may be selectively enabled
via WASD_CONFIG_GLOBAL directives (Chapter 8).

• Server Administration page directives

• authentication/authorization (e.g. failures)

• CLI HTTPd control directives

• HTTPd events (e.g. startup, exit, SSL private key password requests)

• proxy file cache maintenance

Some significant server events are always logged to OPCOM if any one of the above categories
is enabled.

4.12 Access Logging
WASD provides a versatile access log, allowing data to be collected in Web-standard common
and combined formats, as well as allowing customization of the log record format. It is also
possible to specify a log period. If this is done log files are automatically changed according
to the period specified.

Where multiple access log files are generated with per-instance, per-period and/or per-service
logging (see below) these can be merged into single files for administrative or archival
purposes using the CALOGS utility.

The Quick-and-Dirty LOG STATisticS utility can be used to provide elementary ad hoc log
analysis from the command-line or CGI interface.

Exclude requests from specified hosts using the [LogExcludeHosts] configuration parameter,
or using the ‘‘SET NOLOG’’ mapping directive.

4.12.1 Log Format

The configuration parameter [LogFormat] and the server qualifier /FORMAT specifies one of
three pre-defined formats, or a user-definable format. Most log analysis tools can process the
three pre-defined formats. There is a small performance impost when using the user-defined
format, as the log entry must be specially formatted for each request.

• COMMON - This is the most common, base logging format for Web servers. COMMON
is the default log format.

• COMMON_SERVER - This is an optional format used, for one, by the NCSA server. It
is basically the common format, with the server host name appended to the line (used for
multi-homed servers, see Section 4.3).

Configuration Considerations 4–23

• COMBINED - This is an optional format used, for one again, by the NCSA server. It too
is basically the common format, with the HTTP referer and user agent appended.

User-Defined

The user-defined format allows customised log formats to be specified using a selection of
commonly required data. The specification must begin with a character that is used as a
substitute when a particular field is empty (use "\0" for no substitute, as in the "windows log
format" example below).

Two different "escape" characters introduce the following parameters:

A ‘‘!’’ followed by

Characters Description

AR authentication realm (if any)

AU authenticated user name (if any)

BB bytes in body (excludes response header)

BQ quadword bytes in response (includes header)

BY bytes in response (includes header)

CA client address

CC X509 client certificate authorization distinguishing name

CI SSL session cipher (e.g. ‘‘AES128-SHA’’, ‘‘AES256-SHA256’’)

CL value provided by ‘‘Content-Length:’’ header (cf. ‘‘PL’’)

CN client host name (or address if DNS lookup disabled)

CP client port

DI specified dictionary value

ID session track ID - obsolete

EM request elapsed time in milliseconds

ES request elapsed time in fractional seconds

ME request method

NP specified notepad value

PA request path (not to be confused with ‘‘RQ’’)

PL actual body (payload) length received with POST or PUT (cf. ‘‘CL’’)

PR request URL (includes protocol scheme)

QS request query string (if any)

4–24 Configuration Considerations

Characters Description

RF referer (if any)

RQ complete request string (see below)

RP request protocol

RS response status code

SN server host name

SC script name (if any)

SM request scheme (http: or https:)

SP server port

SR SSL session reused

SV SSL protocol (e.g. ‘‘SSLv3’’, ‘‘TLSv1’’)

TC request time (common log format)

TI request time (local in ISO 8601 extended format)

TS request time (UTC in ISO 8601 basic format) sortable

TU request time (UTC)

TV request time (VMS format)

UA user agent

VS virtual service (service host:port)

XX custom, usually site/client-specific, logging item
see module [SRC.HTTPD]LOGGING.C functions LoggingCustom..()

A ‘‘\’’ followed by

Character Description

0 a null character (used to define the empty field character)

! insert an ‘‘!’’

\ insert a ‘‘\ ’’

n insert a newline

q insert a quote (so that in DCL the quotes won’t need escaping!)

t insert a TAB

Any other character is directly inserted into the log entry.

‘‘PA’’ and ‘‘RQ’’
The ‘‘PA’’ and ‘‘RQ’’ have distinct roles. In general the ‘‘RQ’’ (request) directive will
always be used as this is the full request string; script component (if any), path string

Configuration Considerations 4–25

and query string component (if any). The ‘‘PA’’ directive is merely the path string after
any script and query string components have been removed.

Pre-defined Plus User-Defined

It is possible to use one of the pre-defined log format keywords with additional user-defined
directive appended. The appended directives must include ALL additional literal characters
and directives required in the log entry. The syntax is <pre-defined keyword>+<appended
format> as in ‘‘COMMON+ !EM’’.

Examples

1. The equivalent of the common log format is:

-!CN - !AU [!TC] \q!RQ\q !RS !BY

2. The combined log format could be specified as:

-!CN - !AU [!TC] \q!RQ\q !RS !BY \q!RF\q \q!UA\q

3. The O’Reilly WebSite ‘‘windows log format’’ would be created by:

\0!TC\t!CA\t!SN\t!AR\t!AU\t!ME\t!PA\t!RQ\t!EM\t!UA\t!RS\t!BB\t

4. The common log format with appended request duration in seconds could be provided
using:

-!CN - !AU [!TC] \q!RQ\q !RS !BY !ES

5. Alternatively, to append the SSL protocol version and cipher with the combined format:

COMBINED+ !SV !CI

4.12.2 Log Per-Period

The access log file may have a period specified against it, producing an automatic generation
of log file based on that period. This allows logs to be systematically named, ordered and kept
to a managable size. This is also known as log rotation. The period specified can be one of

• HOURLY

• DAILY

• weekly as . . .
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY
SUNDAY

• MONTHLY

The log file changes on the first request after the entering of the new period.

4–26 Configuration Considerations

When using a periodic log file, the file name specified by WASD_CONFIG_LOG or the
configuration parameter [LogFile] is partially ignored, only partially because the directory
component of it is used to located the generated file name. The periodic log file name generated
comprises

• server host name

• server port

• year (YYYY)

• month (MM)

• day (DD)

• hour (HH, only present when HOURLY period is configured)

as in the following example

WASD_LOGS:WASD_80_19971013_ACCESS.LOG

For the daily period the date represents the request date. For the weekly period it is the date
of the previous (or current) day specified. That is, if the request occurs on the Wednesday for
a weekly period specified by Monday the log date show the last Monday’s. For the monthly
period it uses the first.

4.12.3 Log Per-Service

By default a single access log file is created for each HTTP server process. Using the
[LogPerService] configuration directive a log file for each service provided by the HTTPd
is generated (Section 4.3). The [LogNaming] format can be any of "NAME" (default) which
names the log file using the first period-delimited component of the IP host name, "HOST"
(which uses as much of the IP host name as can be accomodated within the maximum 39
character filename limitation under ODS-2), or "ADDRESS" which uses the full IP host
address in the name. Both HOST and ADDRESS have hyphens substituted for periods in the
string. If these are specified then by default the service port follows the host name component.
This may be suppressed using the [LogPerServiceHostOnly] directive, allowing a minimum
extra 3 characters in the name, and combining entries for all ports associated with the host
name (for example, a standard HTTP service on port 80 and an SSL service on port 443 would
have entries in the one file).

4.12.4 Log Per-Instance

To reduce physical disk activity, and thereby significantly improve performance, the RMS
characteristics of the logging stream are set to buffer records for as long as possible and only
write to disk when buffer space is exhausted (a periodic flush ensures records from times of
low activity are written to disk). However when multiple server processes (either in the case
of multiple instances on a single node, single instance on each of multiple clustered nodes,
or a combination of the two) have the same log files open for write then this buffering and
defered write-to-disk is disabled by RMS, it insisting that all records must be flushed to disk
for correct serialization and coherency.

This introduces measurable latency and a potentially significant bottleneck to high-demand
processing. Note that it only becomes a real issue under load. Sites with a low load should
not experience any impact.

Configuration Considerations 4–27

Sites that may be affected by this issue can revert to the original buffered log stream by
enabling the [LogPerInstance] configuration directive. This ensures that each log stream has
only one writer by creating a unique log file for each instance process executing on the node
and/or cluster. It does this by appending the node and process name to the file type. This
would change the log name from something like

WASD_LOGS:131-185-250-202_80_ACCESS.LOG

to, in the case of a two-instance single node,

WASD_LOGS:131-185-250-202_80_ACCESS.LOG_KLAATU_HTTPD-80
WASD_LOGS:131-185-250-202_80_ACCESS.LOG_KLAATU_HTTPE-80

Of course the number-of and naming-of log files is beginning to become a little

itimidating at this stage! To assist with managing this seeming plethora of access log files
is the calogs utility, which allows multiple log files to be merged whilst keeping the records
in timestamp order.

4.12.5 Log Naming

When per-period or per-service logging is enabled the access log file has a specific name
generated. Part of this name is the host’s name or IP address. By default the host name is
used, however if the host IP address is specified the literal address is used, hyphens being
substituted for the periods. Accepted values for the [LogNaming] configuration directive are:

• ADDRESS

• HOST

• NAME (default)

Examples of generated per-service (non-per-period) log names:

WASD_LOGS:131-185-250-202_80_ACCESS.LOG
WASD_LOGS:WWW-EXAMPLE-COM_80_ACCESS.LOG
WASD_LOGS:WASD_80_ACCESS.LOG

Examples of generated per-period (with/without per-service) log names:

WASD_LOGS:131-185-250-202_80_19971013_ACCESS.LOG
WASD_LOGS:WWW-EXAMPLE-COM_80_19971013_ACCESS.LOG
WASD_LOGS:WWW_80_19971013_ACCESS.LOG

Examples of generated per-instance (per-service and per-period) log names:

WASD_LOGS:131-185-250-202_80_ACCESS.LOG_KLAATU_HTTPD-80
WASD_LOGS:WWW-EXAMPLE-COM_80_ACCESS.LOG_KLAATU_HTTPD-80
WASD_LOGS:WASD_80_ACCESS.LOG_KLAATU_HTTPD-80
WASD_LOGS:131-185-250-202_80_19971013_ACCESS.LOG_KLAATU_HTTPD-80
WASD_LOGS:WWW-EXAMPLE-COM_80_19971013_ACCESS.LOG_KLAATU_HTTPD-80
WASD_LOGS:WWW_80_19971013_ACCESS.LOG_KLAATU_HTTPD-80

4.12.6 Access Tracking

Access tracking has been obsoleted with WASD v11.0.

4–28 Configuration Considerations

4.12.7 Access Alert

It is possible to mark a path as being of specific interest. When this is accessed by a request
the server puts a message into the the server process log and perhaps of greater immediate
utility the increase in alert hits is detected by HTTPDMON and this (optionally) provides an
audible alert allowing immediate attention. This is enabled on a per-path basis using the
SET mapping rule. Variations on the basic rule allow some control over when the alert is
generated.

ALERT - at the conclusion of the request
ALERT=MAP - immediately after mapping (early)
ALERT=AUTH - when (any) authorization has been performed
ALERT=END - at the conclusion of the request (default)
ALERT=integer - see below
NOALERT - suppress alert for this path

The special case ALERT=integer allows a path to be alerted if the final response HTTP status
is the same as the integer specified (e.g. 501, 404) or within the category specified (599, 499).

Configuration Considerations 4–29

Chapter 5

Security Considerations

This section does not pretend to be a complete guide to keeping the ‘‘bad guys’’ out. It does
provide a short guide to making a site more-or-less liberal in the way the server supplies
information about the site and itself. The reader is also strongly recommended to a number
of hard copy and Web based resources on this topic.

The WASD package had its genesis in making the VMS operating system and associated
resources, in a development environment, available via Web technology. For this reason
configurations can be made fairly liberal, providing information of use in a technical envi-
ronment, but that may be superfluous or less-than-desirable in other, possibly commercial
environments. For instance, directory listings can contain VMS file system META informa-
tion, error reports can be generated with similar references along with reporting source code
module and line information.

The example configuration files contain a fairly restrictive set of directives. When relaxing
these recommendations keep in mind that the more information available about the under-
lying structure of the site the more potential for subversion. Do not enable functionality that
contributes nothing to the fundamental usefulness of the site, or that has the real potential to
compromise any given site. This section refers to configuration directives discussed in more
detail in later chapters.

It is established wisdom that the only secure computing system is one with no users and no
access, that system security is inversely proportional to system usability, and that making
something idiot-proof results in only idiots using it. So there are some trade-offs but . . .

don’t think it can’t happen to you!
A systematic investigation of installed WASD packages by well-known IT professional
Jean-loup Gailly during September 2002 revealed a couple of significant implementa-
tion flaws which compounded by notable instances of sloppy management practices on
two public sites resulted in site compromise (one was mine).

• WASD_ROOT:[DOC.MISC]WASD_ADVISORY_020925.TXT

• https://www.cvedetails.com/cve/CVE-2002-1825/

Security Considerations 5–1

This research has resulted in these server flaws being closed and package security
considerations being extensively reviewed. As a result WASD v8.1 was much more
resistent to such penetration than previous releases (and slightly less easy to use, but
that’s one of those trade-offs). My assessment would be that if Gailly did not find it
then it wasn’t there to find!

Of course any given site’s security is a function of the underlying package’s security
profile, with the site’s implementation of that, AND other considerations such as local
authorization and script implementations. Pay particular and ongoing attention to
site security and integrity.

5.1 Server and Site Testing
This is the merest of mentions for a topic that literally encompasses volumes!

Each site is very-much an individual combination of configurations and applications. Each
site therefore has specific potential vulnerabilities that should be known about and addressed
where possible. Especially if you have an Internet-facing site then this mean you!

Many tools exist at the time of writing that didn’t fifteen years before when WASD was
investigated as described above. Some are on-line, "free" site health checks and penetration
testing. Others are tools that can (often) be used from your platform of choice, many of which
are free and open-source (FOSS). We are spoiled for choice.

In WASD’s earlier years tools such as Apache Bench, WASD Bench, along with batched
cURL and wget requests were used to exercise and, in some limited fashion, fuzz the server
(providing invalid, unexpected, or random request data) in an effort to discover flaws in server
code and execution.

Currently the WASD development bench uses the OWASP ZAP tool to provide a much more
comprehensive exercise and test environment.

OWASP ZAP
‘‘Zed Attack Proxy (ZAP) is a free, open-source penetration testing tool being main-
tained under the umbrella of the Open Web Application Security Project (OWASP).
ZAP is designed specifically for testing web applications and is both flexible and ex-
tensible.
. . .

ZAP provides functionality for a range of skill levels from developers, to testers new
to security testing, to security testing specialists. ZAP has versions for each major
OS and Docker, so you are not tied to a single OS. Additional functionality is freely
available from a variety of add-ons in the ZAP Marketplace, accessible from within the
ZAP client.’’

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

ZAP is cross-platform (Linux, macOS, Windows, other), GUI-based, Java-implemented, and
may be used effectively, though certainly not to its full capabilities, after fifteen minutes
with the introductory documentation. ZAP is a highly recommended tool for site

vulnerability assessment.

5–2 Security Considerations

ZAP is used to exercise the in-development WASD, in particular the following aspects (not in
any particular order).

• Traffic Loading - server behaviour under load; continuing to process correctly while
not exhibiting bottlenecks in performance, or worse, failing with soft (internal assertion
checking) or hard (e.g. ACCVIO) bugchecks. Latency in AST-based processing often
reveals subtle dependencies, race conditions, or other timing-related issues. ZAP allows
a configurable number of concurrent requests when both spidering and vulnerability
scanning.

• Graded Alerts - reports and counts of known attack vectors or general recommendations
after spidering or penetration scans. These are flagged as high, medium or low risk,
provide descriptions with references, and a quick overview of mitigation strategies. Each
instance encountered during the scan has the request-response data available for analysis
allowing specific cases to be identified and mitigated.

• Directory Traversal - (also known as path traversal) aims to access files and directories
that are stored outside the server root, web root or web application folders. By manip-
ulating data that reference files with dot-dot-slash (../) sequences and its variations, or
by using absolute file paths, it may be possible to access arbitrary files and directories
stored in the server or general file system.

• Data Injection - covers a variety of attacks where request parameters are used to
execute (CLI) commands, SQL queries, interpreted script code (e.g. JavaScript, PHP), or
platform-executable binary code. Injecting encoded or obscured data into an HTTP request
via the query-string or header field values is a common vector. Lack of appropriate data
validation underlies injection vulnerability.

• Buffer Overflow - the overwriting of memory fragments of the process, which should
never be modified intentionally or unintentionally. HTTP requests with unusually large
or otherwise unintended header field values, or web application input fields designed for
small, fixed-length, or specific type data are obvious targets. Fuzzing requests can often
induce this.

• Request Fuzzing - where malformed or spurious data is automatically generated and
injected into the processing in an effort to induce unexpected behaviour or failure. In
web environments this can include the HTTP protocol itself, the specific implementation
of some capability of the server, and any scripting environment or web application hosted
on a server.

• Cross Site Scripting - where a malicious web element such as JavaScript, HTML, or
other browser-side code is injected into otherwise benign and trusted web content from a
non-same-origin, third-party source.

It should be noted that these are provided ‘‘out-of-the-box’’, is a subset of that out-of-the-box
functionality of particular interest in WASD development, and utilise only a tiny percentage
of ZAP total capabilities.

Security Considerations 5–3

5.2 Recommended Package Security
The following table provides recommended file protection settings for package top-level
directories. Subdirectories share their parents’ settings. The package tree is owned by the
SYSTEM account. Directories with world READ access have no ACLs. Other directories,
not accessible to the world, but sometimes having other degress of access to one or more
accounts always have rights identifiers (see below) and associated ACLs to control directory
access, and to propagate required access to files created beneath them. The server selectively
enables SYSPRV to provide access to some of these areas (e.g. for log creation).

Some pre-v8.1 directories are not included in this table. These are not significant in versions
from 8.1 onwards and may be deleted. They can continue to exist however and the security
procedures described below ensure that they comply to the general post-8.1 security model.
The file access permissions indicated below are for directory contents. The directory files
themselves have settings appropriate for content access.

Package Access

Directory

Access

World

Access

Other Description

[AXP-BIN] none script:RE Alpha executable script files

[AXP] none none Alpha build and utility area

[CGI-BIN] none script:RE architecture-neutral script files

[DOC] read (world) package documentation

[EXAMPLE] read (world) package examples

[EXERCISE] read (world) package test files

[HTTP$NOBODY] none script:RWED scripting account default home area

[HTTP$SERVER] none server:RWED server account default home area

[IA64-BIN] none script:RE Itanium executable script files

[IA64] none none Itanium build and utility area

[INSTALL] read (world) installation, update and secuity
procedures

[LOCAL] none none site configuration files

[LOG] none none site access logs

[LOG_SERVER] none server:RWED server process (SYS$OUTPUT) logs

[RUNTIME] read (world) graphics, help files, etc.

[SCRATCH] none script:RWED working file space for scripts

[SCRIPT] none none example architecture-neutral
scripts

5–4 Security Considerations

Directory

Access

World

Access

Other Description

[SRC] none (world) package source files

[STARTUP] none server:RE package startup procedures

[VAX-BIN] none script:RE VAX executable script files

[VAX] none none VAX build and utility area

It is recommended site-specific directories have settings applied appropriate to their function
in comparison to similar package directories. See below for tools to assist in this.

Three rights identifiers provide selective access control to the directory tree. Identifiers were
used to allow maximum flexibility for a site in allowing required accounts access to either
execute the server or execute scripts. Non-default account names only need to be granted one
of these identifiers to be provided with that role’s access. Installation, update and/or security
utilities create and maintain these identifiers appropriately.

Rights Identifiers

Identifier Description

WASD_HTTP_SERVER Indicates the default server account.

WASD_HTTP_NOBODY Indicates the default scripting account.

WASD_IGNORE_THIS Looked for by the SECHAN utility to avoid it changing security on site-
specific files.

These rights identifiers are applied to directories and files to provide the required level of
access. The following example shows the security setting of the top-level CGI-BIN.DIR and
one of it content files.

$ DIRECTORY /SECURITY CGI-BIN.DIR

Directory WASD_ROOT:[000000]

CGI-BIN.DIR;1 [SYSTEM] (RWED,RWED,,)
(IDENTIFIER=WASD_HTTP_SERVER,ACCESS=EXECUTE)
(IDENTIFIER=WASD_HTTP_NOBODY,ACCESS=EXECUTE)
(IDENTIFIER=*,ACCESS=NONE)
(IDENTIFIER=WASD_HTTP_NOBODY,OPTIONS=DEFAULT,ACCESS=READ+EXECUTE)
(IDENTIFIER=*,OPTIONS=DEFAULT,ACCESS=NONE)
(DEFAULT_PROTECTION,SYSTEM:RWED,OWNER:RWED,GROUP:,WORLD:)

Total of 1 file.
$ DIRECTORY /SECURITY [CGI-BIN]CGI_SYMBOLS.COM

Directory WASD_ROOT:[CGI-BIN]

CGI_SYMBOLS.COM;1 [SYSTEM] (RWED,RWED,,)
(IDENTIFIER=WASD_HTTP_NOBODY,ACCESS=READ+EXECUTE)
(IDENTIFIER=*,ACCESS=NONE)

Total of 1 file.

Security Considerations 5–5

5.3 Maintaining Package Security
As noted above, WASD version 8.1 and later is much more conservative in what it makes
generally available from the package tree, and a site administrator now has to take extraor-
dinary measures to open up certain sections, making it a much more difficult and deliberate
action. The package installation, update and security procedures and their associated utili-
ties should always be used to ensure that the installed package continues to conform to the
security baseline.

Package security may be ‘‘refreshed’’ or reapplied at any time, and this should be done
periodically to ensure that an installed package has not inadvertantly been opened to access
where it shouldn’t have. Of course this is not a guarantee that any given site is secure. Site
security is a function of many factors; package vulnerabilities, site configuration, deployed
scripts, cracker determination and expertise, etc., etc. What refreshing the security baseline
does is provide a known secure (and WASD-community scrutinized) starting point. It should
be used as part of a well considered site security maintenance program.

SECURE.COM

The following DCL procedure resets the package security baseline.

$ @WASD_ROOT:[INSTALL]SECURE.COM

It guides the administrator through a number of stages

• introductory notes

• server account

• scripting account

• package tree security settings

of which each one may be declined. After all of these steps it searches for and executes if
found the DCL procedure WASD_ROOT:[INSTALL]SECURE.COM. The intent of this file is
to allow a site to automatically update any site-specific security settings (and of course modify
any set by the main procedure).

SECHAN Utility

The SECHAN utility (pronounced ‘‘session’’) is used by SECURE.COM and the associated
procedures to make file system security settings. It is also available for direct use by the site
administrator.

One of the more useful functions of SECHAN is applied using the /IGNORE qualifier.

• /IGNORE - It adds an ACE containing the rights identifier WASD_IGNORE_THIS to
the target file(s) which results in security settings not being applied in the future. When
applying settings the SECHAN utility first checks whether a file has this ACE and if
so ignores the file. This is an effective method for isolating site-specific settings from
changes by this utility.

5–6 Security Considerations

$ SECHAN /IGNORE WASD_ROOT:[CGI-BIN]MY_SCRIPT.COM
$ SECHAN /IGNORE WASD_ROOT:[LOCAL]*.DAT
$ SECHAN /IGNORE WEB:[DATA...]*.*
$ SECHAN /IGNORE WEB:[000000]DATA.DIR

This ACE can be removed from a file (leaving other entries of any ACL intact) using the
/NOIGNORE qualifier. This returns the file(s) subject again to the SECHAN utility.

$ SECHAN /NOIGNORE WASD_ROOT:[CGI-BIN]MY_SCRIPT.COM
$ SECHAN /NOIGNORE WASD_ROOT:[LOCAL]*.DAT

• /ALL - This overrides the default behaviour of ignoring files that have been tagged using
the /IGNORE qualifier. It causes the setting to be applied to ALL files.

Other functionality may prove useful when applied to local parts of the package or web
structure.

• /PACKAGE - Used alone this qualifier results in the entire WASD_ROOT:[000000...]
tree being traversed and the default package security settings applied to all package
files. Top-level directories that the utility does not recognise as belonging to the package
are ignored.

$ SECHAN /PACKAGE
$ SECHAN /PACKAGE /ALL

• /ASIF=<name> - Set the supplied file specification as if it was the specified, top-level
WASD directory. This allows a site-specific directory to have the same security settings
applied as the specified WASD package directory.

$ SECHAN /ASIF=LOCAL WEB:[DATA...]*.*
$ SECHAN /ASIF=LOCAL WEB:[000000]DATA.DIR
$ SECHAN /ASIF=CGI-BIN WEB:[SCRIPTS]*.*
$ SECHAN /ASIF=CGI-BIN WEB:[000000]SCRIPTS.DIR
$ SECHAN /ASIF=DOC WEB:[HTML...]*.*
$ SECHAN /ASIF=DOC WEB:[000000]HTML.DIR

• /NOSCRIPT - Modifies the default behaviour of the /PACKAGE qualifier. This changes
the default rights identifiers applied to ACEs on files in the [CGI-BIN] and [AXP-
BIN]/[VAX-BIN] directories to disallow scripting until manually changed by site admin-
istration.

$ SECHAN /PACKAGE /NOSCRIPT

This section provides only a basic description. More detail may be found in the prologue to
the source code.

5.4 Independent Package and Local Resources
Not only does it make it easier to manage site content but is also good security practice to
keep server package and site content completely separate (Section 4.2).

This can also be applied to scripts, both source and build areas. Keep your business logic out
of the package source tree and potentially prying eyes. The script executables themselves
can be placed into the package scripting directories but should be built independently from
these and copied using locally maintained DCL procedures from build into scripting areas (the
WASD_ROOT:[INSTALL]SECURE.COM procedures described above may be useful here).

Security Considerations 5–7

5.5 Configuration
Various configuration and mapping directives can be used to make the site environment more
or less liberal in the information it implicitly can provide.

5.5.1 Directory Listings

Published guidelines for securing a Web site generally advise against automatic directory
listing generation. Where a home page is not available this may leak information on other
directory contents, provide parent and child directory access, etc. Compounding this is the
WASD facility to force a listing by providing a directory URL with file wildcards (not to decry
the usefulness in some environments).

• [DirAccess] - Make ‘‘disabled’’ to completely remove the ability to generate directory
listings under any circumstances. Setting to ‘‘selective’’ means a directory listing is
only available if the directory contains a file named .WWW_BROWSABLE. When made
‘‘enabled’’ a directory listing may be produced anytime it contains no home (welcome)
page.

• [DirWildcard] - Make ‘‘disabled’’ so that requests cannot force a directory listing by
supplying a URL containing a wildcard file part (when enabled this is provided regardless
of whether a home page exists or not).

• [DirMetaInfo] - Make ‘‘disabled’’ to prevent directory listing pages contain as HTML
<META> tags information about the directory, most significantly the VMS file specifica-
tion for the URL path!

The mapping rule ‘‘SET DIR=keyword’’ can be used to change this on a per-path basis
(Section 12.5.5).

Conservative recommendation: Set ‘‘[DirAccess] selective’’ allowing listing for directories
containing a file named ‘‘.WWW_BROWSABLE’’, disable [DirMetaInfo] and [DirWildcard].

5.5.2 Server Reports

Reports are pages generated by the server, usually to indicate an error or other non-
success condition, but sometimes to indicate success (e.g. after a successful file upload).
Reports provide either basic or detailed information about the situation. Sometimes the
detailed information includes VMS file system details, system status codes etc. To limit this
information to a minimum indication adjust the following directives.

• [ReportBasicOnly] - Make ‘‘enabled’’ to limit the quantity of information to the
minimum required to advise of the situation. Such reports give only the HTTP status
code and brief explanation of the code’s meaning. Note that this can also be done on a
per-path basis using mapping rules.

• [ReportMetaInfo] - Make ‘‘disabled’’ to exclude information on the server software,
source code module and line number initiating the report. META information may also
contain VMS file or system specific information.

• [ServerSignature] - Make ‘‘disabled’’ to prevent the inclusion of server software, host
and port information as a footer to a report.

The mapping rule ‘‘SET REPORT=keyword’’ can be used to change some of these on a per-path
basis (Section 12.5.5).

5–8 Security Considerations

Conservative recommendation: Provide minimal error information by enabling [Report-
BasicOnly] and disabling [ReportMetaInfo]. Enable [ServerSignature] to provide a slightly
more friendly report (server software can easily be obtained from the response header any-
way).

5.5.3 Scripting

If a static site is all that’s required this source of compromise can simply be avoided.

• [Scripting] - Setting this to ‘‘disabled’’ prevents all scripting entirely. This includes DCL
CGI and CGIplus, DECnet-based OSU and CGI, and SSI DCL (<–#dcl –>, <–#exec –>,
etc.).

Conservative recommendation: Only deploy scripts your site will actually be using. Re-
move all the files associated with any other scripts. Do not allow obsolete script environments
to remain active. Be proactive.

Also see Section 5.6.

5.5.4 Server Side Includes

SSI documents are pages containing special markup directives interpreted by the server and
replaced with dynamic content. This can include detail about the server, the file or files
making up the document, and can even include DCL commands and procedure activation for
supplying content into the page. All this by anyone who can author on the site.

• [SSI] - Setting this to ‘‘disabled’’ prevents all Server Side Include processing completely.

• [SSIexec] - Setting this to ‘‘disabled’’ disallows pages from invoking DCL to supply
content for the page. WASD provides a number of levels of this and the reader is refered
elsewhere in this and other documents for further information of what can and cannot be
done, and by whom, in these processes.

The mapping rule ‘‘SET SSI=keyword’’ can be used to change some of this on a per-path basis
(Section 12.5.5).

Conservative recommendation: Disable [SsiExec].

5.6 Scripting
Scripting has been a notorious source of server compromise, particularly within Unix environ-
ments where script process shell command-line issues require special attention. The WASD
CGI scripting interface does not pass any arguments on the command line, and is careful
not to allow substitution when constructing the CGI environment. Nevertheless, script be-
haviours cannot be guaranteed and care should be exercised in their deployment (ask me!)

It is strongly recommended to execute scripts in an account distinct from that executing the
server. This should also mean that the accounts are not members of the same group nor
should it be a member of any other group. This minimises the risk of both unintentional and
malicious interference with server operation through either Inter-Process Communication
(IPC) or scripts manipulating files used by the server. The PERSONA facility can be used to
further differentiate script activities. See ‘‘Scripting Overview’’ for further detail.

Security Considerations 5–9

The default WASD installation creates two such accounts, with distinct UICs, usernames
and home directory space. Nothing should be assumed or read into the scripting account
username - it’s just a username.

Default Accounts

Username Description

HTTP$SERVER Server Account

HTTP$NOBODY Scripting Account

During startup the server checks for the existence of the default scripting account and
automatically configures itself to use this for scripting. If it is not present it falls-back
to using the server account. Other account names can be used if the startup procedures
are modified accordingly. The default scripting username may be overridden using the
/SCRIPT=AS=<username> qualifier (also see the ‘‘Scripting Overview’’).

5.7 Authorization
Authorization issues imply controlling access to various resources and actions and therefore
require careful planning and implementation if compromise is to be avoided. WASD has a
quite capable and versatile authorization and authentication environment, with a significant
number of considerations.

WASD authorization cannot be enabled without the administrator configuring at least three
resources, and so therefore cannot easily be ‘‘accidentally’’ activated. One of these is the
addition of a startup qualifier controlling where authentication information may be sourced.
Another the server configuration file. The third, mapping paths against authorization
configuration.

For sites that may be particularly sensitive about inadvertant access to some resources it is
possible to use the authorization configuration file as a type of cross-check on the mapping
configuration file. The server /AUTHORIZATION=ALL startup qualifier forces all access to
be authorized (even if some are marked ‘‘none’’). This means that if something ‘‘escapes’’ via
the mapping file it will very likely be ‘‘caught’’ by an absence in the authorization file.

5.8 Miscellaneous Issues
Although it is of limited usefulness because server identity may be deduced from behaviour
and other indicators the exact server and version may be obscured by using the otherwise
undocumented /SOFTWARE= qualifier to change the server identification string to (basically)
whatever the administrator desires. This identification is included as part of all HTTP
response headers.

Historically and by default server configuration and authorization sources are contained
within the server package tree. There is no reason why they cannot be located anywhere
the site prefers. Generally all that is required is a change to logical name definition and
server startup.

5–10 Security Considerations

Package Tree

Version 8.1 and later is much more conservative in what it makes available of the package tree
via the server. The package installation, update and security procedures and their associated
utilities should always be used to ensure that the installed package continues to conform to
the security baseline. See Section 5.3.

Furthermore, with many sites there may be little need to access the full, or any of the WASD
package tree. A combination of mapping and/or authorization rules can relatively simply
block or control access to it. These examples can be easily tailored to suit a site’s specific
requirements.

This example shows blocking all access to the /wasd_root/ tree, except for documentation,
source code, examples and exercise (performance results) areas.

WASD_CONFIG_MAP
pass /wasd_root/doc/*
pass /wasd_root/src/*
pass /wasd_root/example/*
pass /wasd_root/exercise/*
fail /wasd_root/*

The next example forbids all access to the package tree unless authorized (the authorization
detail would vary according to the site). It also allows modify access for the Server
Administration page and to the /wasd_root/local/ area.

WASD_CONFIG_MAP
pass /wasd_root/*

WASD_CONFIG_AUTH
[WASD_WEB_ADMIN=id]
/httpd/-/admin/* r+w
/wasd_root/local/* r+w
/wasd_root/* r

Be careful!
There are often multiple paths to a single resource. For instance, it is of little
significance blocking access to say /wasd_root/doc/ if it’s also possible to access it via
/doc/.

The following example shows how this might occur.

WASD_CONFIG_MAP
fail /wasd_root/doc/*
pass /* /wasd_root/*

Authorization rules can be used to effectively block access to any VMS file specification
(it cannot be done during mapping because the translation from path to file system is not
performed until mapping is complete).

WASD_CONFIG_AUTH
if (path-translated:WASD_ROOT:[DOC]*) * none

or to selectively allow access

WASD_CONFIG_AUTH
[[WASD_VMS_RW=id]]
if (path-translated:WASD_ROOT:[DOC]*) * read

Security Considerations 5–11

5.9 Site Attacks
This is not a treatise on Web security and the author is not a security specialist. This is some
general advice based on observation. There is little one can do at the server itself to reduce a
concerted attack against a site. Common objectives of such attacks include the following (not
an exhaustive list).

Platform Vulnerabilities

Where a general attack is launched directed against a specific platform (a combination of
operating system and Web server software). Often these can be due to wide-spread infection
of systems, meaning many attacks are being launched from a large number of systems (often
without the system owners’ knowlege or cooperation).

WASD, and OpenVMS in particular, are generally immune to such attacks because they are
not Microsoft or Unix based. The impact of the attack becomes one of the nuisance-value
traffic as the site is probed by the (sometimes very large number of) source systems.

Site Vulnerabilities

Where a specific attack is made against a site in an attempt to exploit a known vulnerability
associated with that platform or environment.

These are perhaps the most worrying, although the security-by-obscurity element works in
favour of WASD and OpenVMS in this case. Neither are as common as other platforms and
therefore do not receive as much attention.

Denial of Service

(DOS) Usually comprise flooding a site with requests in an effort to consume all available
network or server resources making it unavailable for legitimate use.

These can be insidious, flooding network equipment as well as systems. Attempts at control
are best undertaken at the periphery of the network (routers) although concerted attacks can
succeed against the best prepared network.

Password Cracking

Where a systematic attempt to break into one or more accounts is undertaken. These are
often repeated, dictionary-based password-guessing attacks.

WASD’s authentication functionality notes successive password validation failures and after
a reasonable number disables all access via the username for a constantly extended period.
Passwords stop being checked and so a dictionary-based attack cannot succeed. Password
validation failures can be recorded via OPCOM.

5–12 Security Considerations

Authorization Holes

Knowing of or searching for resources that should be controlled by authorization but are not.

WASD’s /AUTHORIZATION=ALL functionality may assist here (Section 5.7).

Strategies

There are a few strategies for reducing the load on a server experiencing a generalized attack
or probing. These can also be used to ‘‘discourage’’ the source from considering the site an easy
target. Unfortunately most require request acceptance and at least some processing before
taking action. The general idea is to identify either the source site or some characteristic of
the request that indicates it could not possibly be legitimate. Most platform-specific attacks
have such a signature. For instance attacks against Microsoft platforms often involve probes
for backdoors into non-server executables. These can be identified by the path containing
strings such as ‘‘/winnt/’’, ‘‘/system32/’’, ‘‘/cmd.exe’’ or variations on them. This style will be
used in examples below.

• If the source IP address is known then the [Reject] (and/or [Accept]) configuration
directives can be used to reject the request connection very early in the processing. The
source agent receives a message about access being rejected.

[Reject]
131.185.250.*
the.host.name

• Mapping rules in combination with conditionals may be used to redirect the request. This
redirection could be to another, non-existent site, in the hope that the source agent will
use the supplied URL and thus divert some activity away from the local site.

if (remote-host:the.host.name)
redirect * http://the.host.name/*

endif

redirect **/winnt/** http://does.not.exist/

• Mapping rule redirection can also be used to just ‘‘drop’’ the connection without any
further interaction or processing. The source agent receives no response, just a broken
connection.

if (remote-addr:131.185.250.*)
pass * "000 just drop it!"

endif

pass **/system32/** "000 just drop it!"

• The hiss facility returns a stream of random alpha-numeric characters (a sort of white-
noise). No response header is provided. Such a response might cause the source agent at
best some distress (perhaps disabling it) or at least disuade it from continuing with more
probes (as the target is obviously not a Web server ;-)

Security Considerations 5–13

if (remote-addr:131.185.250.*) map * /hiss/*
script /hiss/* /hiss/*

map **/cmd.exe** /hiss/*/cmd.exe*
script /hiss/* /hiss/*

5–14 Security Considerations

Chapter 6

String Matching

Matching of strings is a pervasive and important function within the server. Two types
are supported; wildcard and regular expression. Wildcard matching is generally much less
expensive (in CPU cycles and time) than regular expression matching and so should always be
used unless the match explicitly requires otherwise. WASD attempts to improve the efficiency
of both by performing a preliminary pass to make simple matches and eliminate obvious
mismatches using a very low-cost comparison. This either matches or doesn’t, or encounters
a pattern matching meta-character which causes it to undertake full pattern matching.

To assist with the refinement of string matching patterns the Server Administration facility
has a report item named ‘‘Match’’. This report allows the input of target and match strings
and allows direct access to the server’s wildcard and regular expression matching routines.
Successful matches show the matching elements and a substitution field (Section 6.4) allows
resultant strings to be assessed.

To determine what string match processing is occuring during request processing in the
running server use the match item available from the Server Administration WATCH Report.

6.1 Wildcard Patterns
Wildcard patterns are simple, low-cost mechanisms for matching a string to a template. They
are designed to be used in path and authorization mapping to compare a request path to the
root (left-hand side) or a template expression.

Wildcard Operators

Expression Purpose

* Match zero or more characters (non-greedy)

** Match zero or more characters (greedy)

% Match any one character

String Matching 6–1

Wildcard matching uses the ’*’ and ’%’ symbols to match any zero or more, or any one character
respectively. The ’*’ wildcard can either be greedy or non-greedy depending on the context
(and for historical reasons). It can also be forced to be greedy by using two consecutive (’**’).
By default it is not greedy when matching request paths for mapping or authentication, and
is greedy at other times (matching strings within conditional testing, etc.)

Greedy and Non-Greedy

Non-greedy matching attempts to match an asterisk wildcard up until the first character that
is not the same as the character immediately following the wildcard. It matches a minimum
number of characters before failing. Greedy matching attempts to match all characters up
until the first string that does not match what follows the asterisk.

To illustrate; using the following string

non-greedy character matching compared to greedy character matching

the following non-greedy pattern

*non-greedy character*matching

does not match but the following greedy pattern

*non-greedy character**matching

does match. The non-greedy one failed as soon as it encountered the space following the first
‘‘matching’’ string, while the greedy pattern continued to match eventually encountering a
string matching the string following the greedy wildcard.

6.2 Regular Expressions
Regular expression matching is case insensitive (in line with other WASD behaviour) and
uses the POSIX EGREP pattern syntax and capabilities. Regular expression matching
offers significant but relatively expensive functionality. One of those expenses is expression
compilation. WASD attempts to eliminate this by pre-compiling expressions during server
startup whenever feasable. Regular expression matching must be enabled using the [RegEx]
WASD_CONFIG_GLOBAL directive and are then differentiated from wildcard patterns by
using a leading ‘‘^’’ character.

A detailed tutorial on regular expression capabilities and usage is well beyond the scope of
this document. Many such hard-copy and on-line documents are available.

http://en.wikipedia.org/wiki/Regular_expression

This summary is only to serve as a quick mnemonic. WASD regular expressions support the
following set of operators.

Operator Overview

Description Usage

Match-self Operator Ordinary characters.

6–2 String Matching

Description Usage

Match-any-character Operator .

Concatenation Operator Juxtaposition.

Repetition Operators * + ? {}

Alternation Operator |

List Operators [...] [^...]

Grouping Operators (...)

Back-reference Operator \digit

Anchoring Operators ^ $

Backslash Operator Escape meta-character; i.e. \ ^ . $ | [(

The following operators are used to match one, or in conjunction with the repetition operators
more, characters of the target string. These single and leading characters are reserved
meta-characters and must be escaped using a leading backslash (‘‘\ ’’) if required as a literal
character in the matching pattern. Note that this does not apply to the range hyphen; to
include a hyphen in a range ensure the character is the first or last in the range.

Matching Operators

Expression Purpose

^ Match the beginning of the line

. Match any character

$ Match the end of the line

| Alternation (or)

[abc] Match only a, b or c

[^abc] Match anything except a, b and c

[a-z0-9] Match any character in the range a to z or 0 to 9

Repetition operators control the extent, or number, of whatever the matching operators match.
These are also reserved meta-characters and must be escaped using a leading backslash if
required as a literal character.

Repetition Operators

Expression Function

* Match 0 or more times

String Matching 6–3

Expression Function

+ Match 1 or more times

? Match 1 or zero times

{n} Match exactly n times

{n,} Match at least n times

{n,m} Match at least n but not more than m times

6.3 Examples
The following provides a series of examples as they might occur in use for server configuration.

1. Equivalent functionality using wildcard and regular expression patterns. Note that
‘‘Mozilla’’ must be at the start of the string, with the regular expression using the start-
of-string anchor resulting in two consecutive ‘‘^’’s, one indicating to WASD a regular
expression, the other being part of the expression itself.

if (user-agent:Mozilla*Gecko*)
if (user-agent:^^Mozilla.*Gecko)

2. This shows path matching using equivalent wildcard and regular expression matching.
Note the requirement to use the regular expression grouping parentheses to provide the
substitution elements, something provided implicitly with wildcard matching.

map /*/-/* /wasd_root/runtime/*/*
map ^/(.+)/-/(.+) /wasd_root/runtime/*/*

3. This rather contrived regular expression example has no equivalent capability available
with wildcard matching. It forbids the use of any path that contains any character other
than alpha-numerics, the hyphen, underscore, period and forward-slash.

pass ^[^-_./a-z0-9]+ "403 Forbidden character in path!"

6.4 Expression Substitution
Expression substitution is available during path mapping (Chapter 12). Both wildcard
(implicitly) and regular expressions (using grouping operators) note the offsets of matched
portions of the strings. These are then used for wildcard and specified wildcard substitution
where result strings provide for this (e.g. mapping ’pass’ and ’redirect’ rules). A maximum of
nine such wildcard substitutions are supported (one other, the zeroeth, is the full match).

Wildcard Substitution

With wildcard matching each asterisk wildcard contained in the pattern (template string)
has matching characters in the target string noted and stored. Note that for the percentage
(single character) wildcard no such storage is provided. These characters are available for
substitution using corresponding wildcards present in the result string. For instance, the
target string

6–4 String Matching

this is an example target string

would be matched by the pattern string

* is an example target *

as containing two matching wildcard strings

this
string

which could be substituted using the result string

* is an example result *

producing the resultant string

this is an example result string

Regular Expression Substitution

With regular expression matching the groups of matching characters must be explicitly
specified using the grouping parenthesis operator. Hence with regular expression matching
it is possible to match many characters from the target string without retaining them for
later substitution. Only if that match is designated as a subsitution source do the matching
characters become available for substituion via any result string. Using two possible target
strings as an example

this is an example target string
this is a contrived target string

would both be matched by the regular expression

^^([a-z]*) is [a-z]* target ([a-z]*)$

which though it contains three regular expressions in the pattern, only two have the grouping
parentheses, and so make their matching string available for substitution

this
string

which could be substituted using the result string

* is the final result *

producing the resultant string

this is the final result string

Specified Substitution

By default the strings matched by wildcard or grouping operators are substituted in the
same order in which they are matched. This order may be changed by specifying which
wildcard string should be substituted where. Not all matched (and stored) strings need to be
substituted. Some may be omitted and the contents effectively ignored.

String Matching 6–5

The specified substitution syntax is a result wildcard followed by a single-apostrophe (’) and
a single digit from zero to nine (0 . . . 9). The zeroeth element is the full matching string.
Element one is the first matching part of the expression, on through to the last. Specifying
an element that had no matching string substitutes an empty string (i.e. nothing is added).
Using the same target string as in the previous previous example

this is an example target string

and matched by the wildcard pattern string

* is an example target *

when substituted by the result string

*’2 is an example result

would produce the resultant string

string is an example result

with the string represented by the first wildcard effectively being discarded.

6–6 String Matching

Chapter 7

Conditional Configuration

Request processing (WASD_CONFIG_MAP) and authorization (WASD_CONFIG_AUTH)
rules may be conditionally applied depending on request, server or other charactersistics.
These include

server host name, port
client IP address and host name
browser-accepted content-types, character sets, languages, encodings
browser identification string
scheme (‘‘http:’’ or ‘‘https:’’, i.e. is it a secure request?)
HTTP method (GET, POST, etc.)
request path, query string, cookie data, refering page
virtual host:port specified in request header
system information (hardware, Alpha/VAX, node name, VMS version, etc.)
local time
random number generation

7.1 Service Conditionals
As described in Section 4.3.1 a [[host:port]] rule applies subsequent configuration depending
on whether the request service matches the specified service. This makes it a fundamental
element of conditional configuration.

Note that service conditionals impose a boundary on the scope of if..endif constructs. That
is, an if..endif may not span a virtual service conditional. A conditional flow syntax error
is reported if an if..endif construct is not properly closed before encountering a subsequent
[[host:port]] rule.

7.2 If..endif Conditionals
These may be nested up to a maximum depth of eight, are not case sensitive and generally
match via string comparison, although some tests are performed as boolean operations,
by converting the conditional parameter to a number before comparison, and IP address
parameters will accept a network mask as well as a string pattern.

Conditional Configuration 7–1

String Matching

The basis of much conditional decision making is string pattern matching. Both wildcard and
regular expression based pattern matching is available (Chapter 6). Wildcard matching in
conditional tests is greedy. Regular expression matching, in common with usage throughout
WASD, is differentiated from wildcard patterns using a leading ‘‘^’’ character.

Conditional Syntax

Conditional expressions and processing flow structures may be used in the following formats.
Conditional and rule text may be indented for clarifying structure.

if (condition) then apply rest of line

if (condition)
then apply one
or more rules
up until the corresponding . . .

endif

if (condition)
then apply one
or more rules

else
apply one or more other rules
up until the corresponding . . .

endif

if (condition)
then apply one
or more rules

elif (condition)
apply one or more other rules
in a sort or case statement

else
a possible default rule or rules
up until the delimiting

endif

Logical operators are also supported, in conjunction with precedence ordering parentheses,
allowing moderately complex compound expressions to be applied in conditionals.

! logical negation
&& logical AND
| | logical OR

There are two more conditional structures that allow previous decisions to be reused. These
are unif and the ifif. The first unconditionally includes rules regardless of the current state
of execution. The second resumes execution only if the previous if or elif expression was true.
The else statement may also be used after an unif to continue only if the previous expression
was false. The purpose of these constructs are to allow a single decision statement to include
both conditional and unconditional rules.

7–2 Conditional Configuration

if (condition)
then apply one
or more rules

unif
apply this block of rules
unconditionally

ifif
applied only if the original
if expression was evaulated as true

unif
apply another block of rules
unconditionally

else
and this block of rules
only if the original was false

endif

CAUTIONS
Conditional syntax is checked at rule load time (either server startup or reload). Basic
errors such as unknown keywords and unbalanced parentheses or structure statements
will be detected and reported to the corresponding Admin Menu report and to the server
process log. Unless these reports are checked after modifying rule sets syntax errors
may result in unexpected mappings or access.

Although the server cannot determine the correct intent of an otherwise syntactically
correct conditional, if it encounters an unexpected but detectable condition during
processing it aborts the request, supplying an appropriate error message.

Flow control errors (e.g. an if not closed by a subsequent endif) abort all rule processing
and provide a fatal error report to the client.

7.3 Conditional Keywords
The following keywords provide a match between the corresponding request or other value and
a string immediately following the delimiting colon. White space or other reserved characters
may not be included unless preceded by a backslash. The actual value being used in the
conditional matching may be observed using the mapping item of the WATCH facility.

Conditional Keywords

Keyword Description

accept: Browser-accepted content types as listed in the ‘‘Accept:’’ request header field.
Same string as provided in CGI variable HTTP_ACCEPT.

accept-charset: Browser-accepted character sets as listed in the ‘‘Accept-Charset:’’ request
header field. CGI variable HTTP_ACCEPT_CHARSET.

accept-encoding: Browser-accepted content encoding as listed in the ‘‘Accept-Encoding:’’ request
header field. CGI variable HTTP_ACCEPT_ENCODING.

accept-language: Browser language preferences as listed in the ‘‘Accept-Language:’’ request
header field. CGI variable HTTP_ACCEPT_LANGUAGE.

Conditional Configuration 7–3

Keyword Description

authorization: The raw authorization string from the request header, if any supplied. This
could be simply used to test whether it has been supplied or not.

callout: Simple boolean value. If a script callout is in progress (see ‘‘Scripting
Overview, CGI Callouts’’.) it is true, otherwise false.

client_connect_gt: An integer representing the current network connections (those currently
being processed plus those currently being ‘‘kept alive’’) for the particular
client represented by the current request. If greater than this value returns
true, otherwise false. See Section 4.6.

cluster_member: If the supplied node name is (perhaps currently) a member of the cluster (if
any) the server may be executing on.

command_line: The command line qualifiers and parameters used when the server image was
activated.

cookie: Raw cookie data as the text string provided in ‘‘Cookie:’’ request header field.
CGI variable HTTP_COOKIE.

decnet: Whether DECnet is active on the system and which version is available. This
value will be 0 if not active, 4 if PhaseIV or 5 is PhaseV.

dict: Matches the specified dictionary entry. See Section 7.5.

directory: Tests whether the specified directory exists or not. Parameter can be a
URI available for mapping by the server or a VMS file-system specification.
If no parameter is supplied the request path is mapped to a file-system
specification. As this conditional accesses the file-system it can be relatively
expensive in terms of server latency.

document_root: The DOCUMENT_ROOT CGI variable SET using the map=root=<string>
mapping rule.

file: Tests whether the specified file exists or not. Parameter can be a URI
available for mapping by the server or a VMS file-system specification.
If no parameter is supplied the request path is mapped to a file-system
specification. The specification can be a directory. As this conditional accesses
the file-system it can be relatively expensive in terms of server latency.

forwarded: Proxy/gateway host(s) request forwarded by, as specified in request header
field ‘‘Forwarded:’’. CGI variable HTTP_FORWARDED.

host: The host (and optionally port) specified in request header ‘‘Host:’’ field. This
is used by all modern browsers to provide virtual host information to the
server. CGI variable HTTP_HOST.

http2: Is true if the request is being transported using HTTP/2

instance: Used to check whether a particular, clustered instance of WASD is available.
See Section 7.3.4.

jpi_username: The account username the server is executing as.

7–4 Conditional Configuration

Keyword Description

mapped_path: The path resulting from mapping (phase 2 if script path involved) from which
the path-translated is derived.

multihome: Somewhat specialised conditional that becomes non-null when a client used a
different IP address to connect to the service than the is bound to. Is set to
the IP address the client used and may be matched using wildcard matching
or as a network mask.

note: Ad hoc information (string) provided by the server administrator using the
/DO=NOTE= facility (and online equivalent) that can be used to quickly and
easily modify rule processing on a per-system or per-cluster basis.

notepad: Information (strings) stored using the SET notepad= mapping rule. See
Section 7.3.1.

ods: Specified as 2 or 5 (Extended File System), or as SRI file name encoding
(MultiNet NFS and others) PWK encoding (PATHWORKS 4/5), ADS encoding
(Advanced Server / PATHWORKS 6), SMB encoding (Samba - same as ADS).

pass: A numeric value, 1 or 2, representing the first or second pass (if a script
component was parsed) through the path mapping rules. Will be zero at other
times. When the server is reverse-mapping a file specification will be -1.

path-info: Path specified in the request line. CGI variable PATH_INFO.

path-translated: VMS translation of path-info. Available after rule mapping (i.e. during
authorization rule processing).

query-string: Query string specified in request line. Same information as provided in CGI
variable QUERY_STRING.

rand: Value from a random number generator. See Section 7.3.2.

redirected: If a request has been internally redirected (Section 12.5.2) this conditional
will be non-zero. Can be used as a boolean or with a digit specified.

referer: URL of refering page as provided in ‘‘Referer:’’ request header field. CGI
variable HTTP_REFERER.

regex: Simple boolean value. If configuration directive [RegEx] is enabled (and hence
regular expression string matching, Chapter 6) this will be true.

remote-addr: Client IP address. Same as provided as CGI variable REMOTE_ADDR. As
with all IP addresses used for conditional testing this may be wildcard string
match or network mask expressed as address/mask-length (see Section 7.3.7).
A domain (host) name preceded by a question point may be specified (e.g.
‘‘?the.host.name’’). The corresponding IP address is then looked up and
compared to the client. This allows ad hoc host name based rules and is
distinct from use of remote-host. Note that DNS lookup can introduce some
latency to rule (and request) processing.

remote-host: Client host name if name resolution enabled, otherwise the IP address (same
as remote-addr). CGI variable REMOTE_HOST.

Conditional Configuration 7–5

Keyword Description

request: Detect the presence of specific or unknown request fields. See Section 7.3.3.

request-method: HTTP method (‘‘GET’’, ‘‘POST’’, etc.) specified in the request line. CGI
variable REQUEST_METHOD.

request-protocol: Detect the HTTP protocol in use for the request, as ‘‘2’’, ‘‘1.1’’, ‘‘1.0’’ or ‘‘0.9’’.
Note that the server-protocol conditional will indicate 1.1 when the request-
protocol indicates 2. The server and its applications (scripts) still treat it
semantically as HTTP/1.1.

request-scheme: Request protocol as ‘‘http:’’ or ‘‘https:’’. CGI variable REQUEST_SCHEME.

request-uri: The unescaped request path plus any query-string. CGI variable REQUEST_
URI.

restart: A numeric value, zero to maximum, representing the number of times path
mapping has been SET map=restart. Can be used as a boolean or with a digit
specified.

robin: Used to check whether a particular, clustered instance of WASD is available
and distribute requests to it using a round-robin algorithm. See Section 7.3.4.

script-name: After the first pass of rule mapping (script component resolution), or during
authorization processing, any script component of the request URI.

server-addr: The service IP address. CGI variable SERVER_ADDR. This may be wildcard
string match or network mask expressed as address/mask-length.

server_connect_gt: An integer representing the current server network connections (those
currently being processed plus those currently being ‘‘kept alive’’). If greater
than this value returns true, otherwise false.

server_process_gt: An integer representing the current server requests in-progress. If greater
than this value returns true, otherwise false.

server-name: The (possibly virtual) server name. This may or may not exactly match any
string provided via the host keyword. CGI variable SERVER_NAME.

server-port: The (possibly virtual) server port number. CGI variable SERVER_PORT.

server-protocol: ‘‘1.1’’, ‘‘1.0’’, ‘‘0.9’’ representing the HTTP protocol used by the request.

server-software: The server identification string, including the version. For example ‘‘HTTPd-
WASD/8.0.0 OpenVMS/AXP SSL’’. CGI variable SERVER_SOFTWARE.

service: This is the composite server name plus port as server-name:port. To match an
unknown service use ‘‘?’’.

ssl: Simple boolean value. If request is via Secure Sockets Layer then this will be
true.

syi_arch_name: System information; CPU architecture of the server system, ‘‘Alpha’’,
‘‘Itanium’’ or ‘‘VAX’’.

7–6 Conditional Configuration

Keyword Description

syi_hw_name: System information; hardware identification string, for example ‘‘AlphaSta-
tion 400 4/233’’.

syi_nodename: System information; the node name, for example ‘‘KLAATU’’.

syi_version: System information; VMS version string, for example ‘‘V7.3’’.

tcpip: A string derived from the UCX$IPC_SHR shareable image. It looks
something like this ‘‘Compaq TCPIP$IPC_SHR V5.1-15 (11-JAN-2001
02:28:33.95)’’ and comprises the agent (Compaq, MultiNet, TCPware,
unknown), the name of the image, the version and finally the link date.

time: Compare to current system time. See Section 7.3.5.

trnlnm: Translate a logical name. See Section 7.3.6.

upstream-addr: Client proxy/accelerator IP address, when ‘‘SET CLIENT=keyword’’ has been
applied to enable transparent up-stream proxy. Same as provided as CGI
variable UPSTREAM_ADDR. As with all IP addresses used for conditional
testing this may be wildcard string match or network mask expressed as
address/mask-length (see Section 7.3.7).

user-agent: Browser identification string as provided in ‘‘User-Agent:’’ request header
field. CGI variable HTTP_USER_AGENT.

webdav: Simple boolean value. If the request has been identified as WebDAV then this
is true. Takes an optional parameter, ‘‘MSagent’’, which is true if a Microsoft
WebDAV agent has been detected.

websocket: Simple boolean value. If a WebSocket protocol upgrade request will be true.

x-forwarded-for: Proxied client name or address as provided in ‘‘X-Forwarded-For:’’ request
header field. CGI variable HTTP_X_FORWARDED_FOR.

7.3.1 Notepad: Keyword

The request notepad is a string storage area that can be used to store and retrieve ad hoc infor-
mation during path mapping and subsequent authorization processing. The notepad contents
can be changed using the SET notepad=<string> or appended to using SET notepad=+<string>
(Section 12.5.5). These contents then can be subsequently detected using the notepad: condi-
tional keyword (or the obsolescent ’NO’ mapping conditional) and used to control subsequent
mapping or authorization processing.

Notepad information persists across internal redirection processing (Section 12.5.2) and so
may be used when the regenerated request is mapped and authorized. To prevent such
information from unexpectedly interfering with internally redirected requests a notepad=‘‘’’
can be used to empty the storage area.

The dictionary facility provides similar and arguably superior functionailtiy. See Section 7.5.
In fact notepad is now implmented as a dictionary entry.

Conditional Configuration 7–7

7.3.2 Rand: Keyword

At the commencement of each pass a new pseudo-random number is generated (and therefore
remains constant during that pass). The rand: conditional is intended to allow some sort of
distribution to be built into a set of rules, where each pass (request) generates a different one.
The random conditional accepts two parameters, a modulas number, which is used to modulas
the base number, and a comparison number, which is compared to the modulas result.

Hence the following conditional rules

if (rand:3:0)
do this

elif (rand:3:1)
do this

else
do this

endif

would pseudo-randomly generate base numbers of 0, 1, 2 and perform the appropriate
conditional block. Over a sufficient number of usages this should produce a relatively even
distribution of numbers. If the modulas is specified as less than two (i.e. no distribution
factor at all) it defaults to 2 (i.e. a distribution of 50%). Hence the following example should
be the equivalent of a coin toss.

if (rand:)
heads

else
tails

endif

7.3.3 Request: Keyword

Looks through each of the lines of the request header for the specified request field and/or
value. This may be used to detect the presence of specific or unknown (to the server) request
fields. When detecting a specified just field the name can be provided

if (request:"Keep-Alive:*")

matching any value, or specific values can also be matched for

if (request:"User-Agent:*Opera*")

Note that all request fields known to the server have a specific associated conditional keyword
(i.e. ‘‘user-agent:’’ for the above example). To determine whether any request fields unknown
to the server have been supplied use the request: keyword as in the following example.

if (request:?)
map * /cgi-bin/unknown_request_notify.com*

endif

7–8 Conditional Configuration

7.3.4 Instance: and Robin: Keywords

Both of these conditionals are designed to allow the redistribution of requests between
clustered WASD services. They are WASD-aware and so allow a slightly more tailored
distribution than perhaps an IP package round-robin implementation might. Each tests
for the current operation of WASD on a particular node (using the DLM) before allowing
the selection of that node as a target. This can allow some systems to be shutting down or
starting up, or have WASD shutdown for any reason, without requiring any extraordinary
procedures to allow for the change in processing environment.

Instance:

The instance: directive allows testing for a particular cluster member having a WASD
instance currently running. This can allow requests to be redirected or reverse-proxied to
a particular system with the knowlege that it should be processed (of course there is a small
window of uncertainty as events such as system shutdown and startup occur asynchronously).
The behaviour of the conditional block is entirely determinate based on which node names
have a WASD instance and the order of evaluation. Compare this to a similar construct using
the robin: directive, as described below.

This conditional is deployed in two phases. In the first, it contains a comma-separated list
of node names (that are expected to have instances of WASD instantiated). In the second,
containing a single node name, allowing the selected node to be tested. For example.

if (instance:NODE1,NODE2,NODE3)
if (instance:NODE1) redirect /* http://node1.domain.name/*?
if (instance:NODE2) redirect /* http://node2.domain.name/*?
if (instance:NODE3) redirect /* http://node3.domain.name/*?
pass * "500 Some sort of logic error!!"

endif
pass * "503 No instance currently available!"

If none of the node names specified in the first phase is currently running a WASD instance the
rule returns false, otherwise true. If true the above example has conditional block processed
with each of the node names successively tested. If NODE1 has a WASD instance executing it
returns true and the associated redirect is performed. The same for NODE2 and NODE3. At
least one of these would be expected to test true otherwise the outer conditional established
during phase one would have been expected to return false.

Robin:

The robin: conditional allows rules to be applied sequentially against specified members of
a cluster that currently have instances of WASD running. This is obviously intended to
allow a form of load sharing and/or with redundancy (not balancing, as no evaluation of the
selected target’s current workload is performed, see below). As with the instance: directive
above, there is, of course, a small window of potential uncertainty as events such as system
shutdown and startup occur asynchronously and may impact availability between the phase
one test and ultimate request distribution.

Conditional Configuration 7–9

This conditional is again used in two phases. The first, containing a comma-separated list
of node names (that are expected to have instances of WASD instantiated). The second,
containing a single node name, allowing the selected node (from phase one) to have a rule
applied. For example.

if (robin:VAX1,ALPHA1,ALPHA2,IA64A)
if (robin:VAX1) redirect /* http://vax1.domain.name/*?
if (robin:ALPHA1) redirect /* http://alpha1.domain.name/*?
if (robin:ALPHA2) redirect /* http://alpha2.domain.name/*?
if (robin:IA64A) redirect /* http://ia64a.domain.name/*?
pass * "500 Some sort of logic error!!"

endif
pass * "503 No round-robin node currently available!"

In this case round-robining will be made through four node names. Of course these do not have
to represent all the systems in the cluster currently available or having WASD instantiated.
The first time the ’robin:’ rule containing multiple names is called VAX1 will be selected. The
second time ALPHA1, the third ALPHA2, and the fourth IA64A. With the fifth call VAX1 is
returned to, the sixth ALPHA1, etc. In addition, the selected nodename is verified to have
a instance of WASD currently running (using the DLM and WASD’s instance awareness). If
it does not, round-robining is applied again until one is found (if none is available the phase
one conditional returns false). This is most significant as it ensures that the selected node
should be able to respond to a redirected or (reverse-)proxied requested. This is the selection
set-up phase.

Then there is the selection application phase. Inside the set-up conditional other conditionals
apply the selection made in the first phase (through simple nodename string comparison).
The rule, in the above example a redirect, is applied if that was the node selected.

During selection set-up unequal weighting can be applied to the round-robin algorithm by
including particular node names more than once.

if (robin:VAX1,ALPHA,VAX2,ALPHA)

In the above example, the node ALPHA will be selected twice as often as either of VAX1 and
VAX2 (and because of the ordering interleaved with the VAX selections).

7.3.5 Time: Keyword

The time: conditional allows server behaviour to change according to the time of day, week,
or even year. It compares the supplied parameter to the current system time in one of three
ways.

1. The supplied parameter is in the form ‘‘1200-1759’’, which should be read as ‘‘twelve noon
to five fifty-nine PM’’ (i.e. as a time range in minutes, generalized as hhmm-hhmm),
where the first is the start time and the second the end time. If the current time is
within that range (inclusive) the conditional returns true, otherwise false. If the range
doesn’t look correct false is always returned.

7–10 Conditional Configuration

if (time:0000-0000)
it’s midnight

elif (time:0001-1159)
it’s AM

elif (time:1200-1200)
it’s noon

else
it’s PM

endif

2. If the supplied parameter is a single digit it is compared to the VMS day of the week
(1-Monday, 2-Tuesday . . . 7-Sunday).

if (time:6 || time:7)
it’s the weekend

else
it’s the working week

endif

3. If the supplied string is not in either of the formats described above it is treated as a
string match with a VMS comparision time (i.e. yyyy-mm-dd hh-mm-ss.hh).

if (time:%%%%-05-*)
it’s the month of May

endif

7.3.6 Trnlnm: Keyword

The trnlnm: conditional dynamically translates a logical name and uses the value. One
mandatory and up to two optional parameters may be supplied.

trnlnm:logical-name[;name-table][:string-to-match]

The logical-name must be supplied; without it false is always returned. If just the logical-
name is supplied the conditional returns true if the name exists or false if it does not. The
default name-table is LNM$FILE_DEV. When the optional name-table is supplied the lookup
is confined to that table. If the optional string-to-match is supplied it is matched against the
value of the logical and the result returned.

7.3.7 Host Addresses

Host names or addresses can be an alpha-numeric string (if DNS lookup is enabled)
or dotted-decimal network address, a slash, then a dotted-decimal mask. For example
‘‘131.185.250.0/255.255.255.192’’. This has a 6 bit subnet. It operates by bitwise-ANDing
the client host address with the mask, bitwise-ANDing the network address supplied with
the mask, then comparing the two results for equality. Using the above example the host
131.185.250.250 would be accepted, but 131.185.250.50 would be rejected. Equivalent nota-
tion for this rule would be ‘‘131.185.250.0/26’’.

Conditional Configuration 7–11

7.4 Examples
The following provides a collection of examples of conditional mapping and authorization rules
illustrating the use of wildcard matching, network mask matching and the various formats
in which the rules may be blocked.

1. This first example shows an EXEC mapping rule being applied to a path if the request
query string contains the string ‘‘example’’.

if (query-string:*example*) exec /* /cgi-bin/example/*

2. In this example a block of mapping statements is processed if the virtual service of
the request matches that in the conditional, otherwise the block is skipped. Note the
indentation to help clarify the structure.

if (service:the.host.name:80)
pass /web/* /dka0/the_host_name_web/*
pass /graphics/* /dka100/graphics/*
pass * "404 Resource not found."

endif

3. This example a series of tests allow a form of case processing where the first to match
will be processed and terminate the matching process. In this case if a match does not
occur rule processing continues after the endif.

if (service:the.host.name:80)
pass /web/* /dka0/the_host_name_web/*

elif (service:next.host.name:80)
pass /web/* /dka0/next_host_name_web/*

elif (service:another.host.name:80)
pass /web/* /dka0/another_host_name_web/*

endif
pass /graphics/* /dka100/graphics/*
pass * "404 Resource not found."

4. In this (somewhat contrived) example a nested test is used to check (virtual) server name
and that the request is being handled via Secure Sockets Layer (SSL) for security. If it is
not an informative message is supplied. The else and the quotes are not really required
but included here for illustration.

if (server-name:the.host.name)
if (scheme:"https")

pass /secure/* /dka0/the_host_name_web/secure/*
else

pass * /dka0/the_host_name_web/secure/only-via-SSL.html
endif

endif

5. This would be another way to accomplish a similar objective to example 4. This uses a
negation operator to exclude access to successive mappings if not requesting via SSL.

7–12 Conditional Configuration

if (server-name:the.host.name)
if (!SSL:)

pass * /web/secure/only-via-SSL.html
endif
pass /secure/* /web/secure/*
pass /other/* /web/other/*
pass /web/* /web/web/*
pass * "404 Resource not found."

endif

6. This example shows the use of a compound conditional using the AND and OR operators.
It also illustrates the use of a network mask. It will exclude all access to the specified path
unless the request is originating from within a specified network (perhaps an intranet)
or via SSL.

if (path:/sensitive/* && !(remote-addr:131.185.250.0/24 || SSL:))
pass * 404 "Access denied (SSL only)."

endif

7. This example illustrates restricting authentication to SSL.

[[*]]
["Your VMS password"=VMS]
if (!request-scheme:https)

* r+w,#0
endif

8. Logical name translation may be used to dynamically alter the flow of rule interpretation.

if (trnlnm:HTTPD_EXAMPLE)
pass /* /example/*

else
pass /* /*

endif

9. Using a site administrator’s /DO=NOTE= entry to modify rule processing. In this example
the contingency of a broken back-end processor has been prepared for and a document
advising clients of the temporary problem is redirected to once the administrator enters

$ HTTPD /DO=NOTE=PROBLEM /ALL

at the command-line (or via the online equivalent). Note that in this example external
clients are provided with the problem advice document while internal clients may still
access the back-end for troubleshooting purposes.

if (note:PROBLEM && !remote-addr:131.185.0.0/16)
pass /* /problem_with_backend.html

else
pass /* /backend/*

endif

Of course there are a multitude of possibilities based on this idea!

Note
The noted data persists across server startups but does not persist across system
startups!

Conditional Configuration 7–13

7.5 Dictionary
The per-request dictionary stores key-value string pairs related to request processing. Some
entries are generated and used internally by the server and others may be inserted, value
changed, removed and tested by the server admin for conditional processing purposes.

The dictionary was initially introduced as an abstraction layer between the significantly
different HTTP/2 and HTTP/1.n header semantics and server internal processing. Its utility
was then extended into configuration. It is implemented as a standard hash table with
collision lists. The small cost in terms of processing is completely offset by its effectiveness.

7.5.1 Configuration Entries

Dictionary entries may be configured using the SET dict=key=value mapping rule or the DICT
key=value meta keyword. These are known as configuration entries. Keys must begin with an
alpha-numeric character but otherwise keys and values may contain any printable character,
with some needing to be escaped in the text of configuration files. These are some examples
of each.

set /example/path* dict=example_key=example\ value
set /example/path* dict=example_key="example value"
set /example/path* dict=example_key="example \"value\""

dict example_key=example\ value
dict example_key="example value"
dict example_key="example \"value\""

If an existing key is (re-)inserted it overwrites the old value.

An entry can have an empty value.

set /example/path* dict=example_key=
dict example_key=

An entry may be removed from the dictionary by prefixing the key name with an exclamation
point.

set /example/path* dict=!example_key
dict !example_key

All configuration entries may be removed by using the exclamation point with an empty key.

set /example/path* dict=!
dict !

Note
Configuration entries persist across internal redirection processing (Section 12.5.2) and
so may be used as flags or otherwise contain useful information when the regenerated
request is mapped and authorized. To prevent such information from unexpectedly
interfering with internally redirected requests selected or all entries can be removed
in the redirected request using the above values.

7–14 Conditional Configuration

7.5.2 Other Entries

As mentioned, the server generates and uses dictionary entries during request processing.
There are multiple types of entry, generally insulated from each other for good reason. These
entries are also available for conditional testing.

Dictionary Entries

Character Type Description

~ configuration admin managed entry

$ internal server processing

> request request header field

< response response header field

The ‘‘if (dict:expression)’’ contruct first checks for a configuration entry, then for an request
header field entry, then finally for an internal entry (response entries are only available for
testing after response processing begins and so not in the search list). It is also possible
to test for a key of a specific type by prefixing the key name with the type character. This
example shows a request header field being conditionally processed.

if (dict:>X-example=hello)

It is also possible to set an entry of a specific type by prefixing the key with the type character.
For example the following will set a response header field that will be included in the header
when returned to the client.

set /example/path* dict=<X-example="\"quoted string\""

Setting any non-configuration entry should only be undertaken by the literati or the brave.

7.5.3 Entry Substitution

The value of a dictionary entry can be derived in whole or part from the value of another
entry or entries. This uses a somewhat familiar substitution syntax. A contrived example
shows an entry being set that transfers back the request user-agent header field as a response
header field.

set /example/path* dict=<X-user-agent=’’>user-agent’

A similar rule can be seen applied in the WATCH report example below.

7.5.4 WATCH Dictionary

The content of a request’s dictionary at significant stages of request processing can be viewed
using the [x]Internal item of a WATCH report. See ‘‘WASD Web Services - Features and
Facilities’’ .

Conditional Configuration 7–15

A request dictionary WATCH point is similar to the following (end of request processing)
example. Note that all of the entry types described above are present in the example,
including two configured entries. Note also that two of the internal entries contain embedded
line-breaks and empty lines. This is an HTTP/2 request and the expanded (HTTP/1.n style)
request_header and response_header entries are due to WATCH items Request [x]Header and
Response [x]Header also being checked. They were not required for request processing.

|Time_______|Module__|Line|Item|Category__|Event...|
8< snip 8<
|21:11:00.12 DICT 0836 0001 INTERNAL DICTIONARY size:32 count:29 bytes:4193|
ENTRY 001 [005] $ {14}request_method={3}GET
ENTRY 002 [009] $ {12}request_path={15}/httpd/-/admin/
ENTRY 003 [014] > {6}accept={63}text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
ENTRY 004 [018] > {15}accept-encoding={13}gzip, deflate
ENTRY 005 [001] > {10}user-agent={116}Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_3) AppleWebKit/601.4.4
ENTRY 006 [007] > {15}accept-language={5}en-us
ENTRY 007 [031] > {13}authorization={30}Basic *************************
ENTRY 008 [004] > {3}dnt={1}1
ENTRY 009 [012] $ {12}request_line={28}GET /httpd/-/admin/ HTTP/1.1
ENTRY 010 [024] > {4}host={18}klaatu.private:443
ENTRY 011 [011] $ {10}http2_ping={6}44.919
ENTRY 012 [013] $ {14}request_header={372}GET /httpd/-/admin/ HTTP/1.1
accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
accept-encoding: gzip, deflate
user-agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_3) AppleWebKit/601.4.4 (KHTML, like
accept-language: en-us
authorization: Basic *************************
dnt: 1
host: klaatu.private:443

ENTRY 013 .012. $ {9}path_info={15}/httpd/-/admin/
ENTRY 014 [000] $ {12}query_string={0}
ENTRY 015 .004. $ {11}request_uri={15}/httpd/-/admin/
ENTRY 016 [025] ~ {7}this_is={7}a test!
ENTRY 017 [028] < {12}x-user-agent={116}Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_3) AppleWebKit/601.4.4
ENTRY 018 .018. $ {15}response_status={3}200
ENTRY 019 [026] $ {15}response_reason={2}OK
ENTRY 020 .011. < {6}server={33}HTTPd-WASD/11.0.0 OpenVMS/AXP SSL
ENTRY 021 [002] < {4}date={29}Tue, 02 Feb 2016 10:40:59 GMT
ENTRY 022 .005. < {13}accept-ranges={5}bytes
ENTRY 023 [008] < {15}accept-encoding={13}gzip, deflate
ENTRY 024 .004. < {7}expires={29}Fri, 13 Jan 1978 14:00:00 GMT
ENTRY 025 [030] < {13}cache-control={18}no-cache, no-store
ENTRY 026 .028. < {6}pragma={8}no-cache
ENTRY 027 .030. < {12}content-type={29}text/html; charset=ISO-8859-1
ENTRY 028 [006] < {14}content-length={5}15741
ENTRY 029 [019] $ {15}response_header={446}HTTP/1.1 200 OK
x-user-agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_3) AppleWebKit/601.4.4 (KHTML, like
server: HTTPd-WASD/11.0.0 OpenVMS/AXP SSL
date: Tue, 02 Feb 2016 10:40:59 GMT
accept-ranges: bytes
accept-encoding: gzip, deflate
expires: Fri, 13 Jan 1978 14:00:00 GMT
cache-control: no-cache, no-store
pragma: no-cache
content-type: text/html; charset=ISO-8859-1
content-length: 15741

8< snip 8<

7–16 Conditional Configuration

The first three digit number is simply the entry count in order of insertion. The second, either
square bracketed or period delimited, is the hash table entry. The square brackets indicate the
head of the hash table, the periods down the collision list. The single punctuation character
is use to indicate and differentiate the entry type. Then are the key and equate-separated
value. The brace enclosed numbers are the length of the key and value respectively.

Conditional Configuration 7–17

Chapter 8

Global Configuration

The example configuration file can be used as a template.

online Web link

By default, the logical name WASD_CONFIG_GLOBAL locates a global configuration
file. Simple editing of the configuration file changes the rules. Alternatively the Server
Administration page configuration interface may be used. Changes to the global configuration
file require a server restart to put them into effect.

The [IncludeFile] is a directive common to all WASD configuration, allowing a separate file
to be included as a part of the current configuration. See Section 4.1.

Some directives take a single parameter, such as an integer, string or boolean value. Other
directives can/must have multiple parameters. The version 4 configuration requires the
directive to be placed on a line by itself and each separate parameter on a separate line
following it. All parameter lines apply to the most recently encountered directive.

Note that all boolean directives are disabled (OFF) by default. This is done so that there can
be no confusion about what is enabled and disabled by default. To use directive controlled
facility it must be explicitly enabled.

Directives requiring periods (timeouts, lifetimes, etc.) can be specified as a single integer
(representing seconds, minutes, hours, etc., depending on the directive) or unambiguously
using any one of minutes:seconds, hours:minutes:seconds or days-hours:minutes:seconds.

Changes to the global configuration file can be validated at the command-line before restart.
This detects and reports any syntactical and fatal configuration errors but of course cannot
check the intent of the rules.

$ HTTPD /DO=GLOBAL=CHECK

Global Configuration 8–1

8.1 Functional Groupings

Authentication/Authorization

[AuthBasic] enable BASIC method

[AuthCacheEntriesMax] maximum concurrent authentication cache entries

[AuthCacheEntrySize] maximum authentication cache entry size in bytes

[AuthCacheMinutes] minutes before explicitly reauthorizing user from sources

[AuthDigest] enable DIGEST method

[AuthDigestGetLife] DIGEST method GET lifetime

[AuthDigestPutLife] DIGEST method PUT lifetime

[AuthFailureLimit] retries allowed before username is marked as intruder

[AuthFailurePeriod] period during which failure limit is applied

[AuthFailureTimeout] period during which a recognised authentication failure is
applied

[AuthRevalidateLoginCookie] Obsolete for WASD v10.2.1 and following.

[AuthRevalidateUserMinutes] minutes before use needs to reenter password

[AuthSysUafAcceptExpPwd] accept expired SYSUAF passwords

[AuthSysUafLogonType] LOCAL, DIALUP, NETWORK (default), REMOTE

[AuthSysUafPwdExpURL] redirection URL is SYSUAF password if expired

[AuthSysUafUseAcme] Obsolete for WASD V9.3 and following.

Buffer Sizes

[BufferQuotaDclOutput] allows sizing of script process SYS$OUTPUT mailbox
quota

[BufferSizeDclCgiHeader] number of bytes allocated to when processing a CGI
response header

[BufferSizeDclCgiPlusIn] number of bytes allocated to scripting process CGI-
PLUSIN mailbox

[BufferSizeDclCommand] bytes allocated to scripting process SYS$COMMAND
mailbox

[BufferSizeDclOutput] bytes allocated to scripting process SYS$OUTPUT
mailbox

[BufferSizeNetFile] maximum bytes allocated to output buffer when
transfering file content

8–2 Global Configuration

[BufferSizeNetMTU] adjust network buffer to this value of MTU (maximum
transmission unit)

[BufferSizeNetRead] bytes allocated to client request read buffer, and to the
scripting process SYS$INPUT mailbox

[BufferSizeNetWrite] bytes allocated to client output buffer

[SocketSizeRcvBuf] bytes allocated to a network connection receive buffer

[SocketSizeSndBuf] bytes allocated to network connection send buffer

Content-Type

[AddType] add a content-type

[AddMimeTypesFile] add the contents of a standard MIME.TYPES file

[CharsetConvert] conversion of one character set to another

[CharsetDefault] default character set for text responses

[StreamLF] enable and set maximum size of automatic Stream-LF
conversion

Directory Listing

[AddIcon] path to icon for a specified content-type

[AddBlankIcon] path to blank icon

[AddDefaultIcon] path to default icon

[AddDirIcon] path to directory icon

[AddParentIcon] path to parent icon

[AddUnknownIcon] path to icon for unknown content-type

[DirAccess] enable and form of listing

[DirBodyTag] specify HTML body tag of listing pages

[DirDescriptionLines] number of HTML file lines searched for document title

[DirLayout] layout of the various listing components

[DirMetaInfo] add server and VMS directory information

[DirNoImpliedWildcard] do not add wildcards to request if not present in path

[DirNoPrivIgnore] ignore, do not report, privilege violations on
files/directories

[DirOwner] allow owner of file to be included in layout directive

[DirPreExpired] pre-expire listing responses

[DirReadMeFile] specify read-me files

Global Configuration 8–3

[DirWildcard] allow wildcards to be specified at all

File Cache

[CacheChunkKBytes] memory block allocation size

[CacheEntriesMax] maximum number of files allowed in cache

[CacheFileKBytesMax] maximum size of a file

[CacheFrequentHits] identify active files

[CacheFrequentPeriod] identify active file

[CacheGuardPeriod] prevent early reloads

[CacheTotalKBytesMax] maximum memory to be consumed by cache

[CacheValidatePeriod] maximum period before the cache checks for file
modification

HTTP/2

[Http2Protocol] enables/disables HTTP/2 on a global basis

[Http2FrameSizeMax] maximum number of bytes in an HTTP/2 frame

[Http2HeaderListMax] maximum number of bytes in a request or response
header

[Http2HeaderTableSize] maximum number of bytes in a request lookup table

[Http2PingSeconds] period between RTT server-client pings

[Http2StreamMax] number of concurrent streams (requests) permitted on a
connection

[Http2InitWindowSize] initial connection flow-control window size

Logging

[Logging] enable logging

[LogExcludeHosts] hosts to be excluded from log

[LogExtend] default allocation/extend in blocks

[LogFile] provides part or all of log file name

[LogFormat] nature and layout of log contents

[LogNaming] how the log name is be constructed

[LogPeriod] period at which new logs are created

[LogPerInstance] create a separate log for each instance process

[LogPerService] create a separate log for each configured service

8–4 Global Configuration

[LogPerServiceHostOnly] suppress service port number as component of log name

[LogWriteFail503] generate 530 responses if the access log cannot be written

Operator Console and Log

[OpcomAdmin] Server Administration directives

[OpcomAuthorization] authentication/authorization messages, e.g. failures

[OpcomControl] CLI HTTPd control directives

[OpcomHTTPd] HTTPd events (e.g. startup, exit, SSL private key
password requests)

[OpcomProxyMaint] proxy file cache maintenance

[OpcomTarget] target operator for online messages

Miscellaneous

[Accept] restrictive list of host from which to accept requests

[ActivityDays] activity graph duration

[ConnectMax] maximum number of concurrent connections

[DNSLookupClient] enable client host name lookup

[DNSLookupLifeTime] host name lookup cache entry lifetime

[DNSLookupRetry] number two second attempts to resolve client host name

[EntityTag] provide a strong validator for file-system based resources

[GzipAccept] advertise acceptance of GZIUP (deflated) request bodies

[GzipFlush] period between GZIP buffer flushes

[GzipResponse] enable GZIP (deflated) response bodies

[InstanceMax] number of per-node server processes to maintain

[InstancePassive] start multiple instances already in passive mode

[Monitor] enable HTTPDMON data exchange

[PipelineRequests] check for and process pipelined requests

[Port] default port

[ProcessMax] maximum number of concurrent requests being processed

[PutBinaryRFM] record format of uploaded file

[PutMaxKBytes] maximum size of a POST or PUT

[PutVersionLimit] maximum RMS file versions retained in a POST or PUT

[RegEx] enable regular expression matching

Global Configuration 8–5

[Reject] proscriptive list of hosts from which request will be
rejected

[RequestHistory] number of requests kept for request report

[SearchScript] path to default search script

[SearchScriptExclude] list of file extensions excluded from implied keyword
search

[Service] list of host names and/or port to create services for
(deprecated)

[ServiceNotFoundURL] redirection URL when a request service is not configured

[Welcome] list of file names that are checked for as home pages

[WWWimplied] virtual services host.name and www.host.name are
treated as synonyms

Proxy Serving

[ProxyCache] enable proxy caching

[ProxyCacheFileKBytesMax] maximum size of response for caching

[ProxyCacheDeviceCheckMinutes] minutes between check of cache device usage

[ProxyCacheDeviceDirOrg] flat 256 or 64x64 directory organization

[ProxyCacheDeviceMaxPercent] maximum percentage of cache device used before purge

[ProxyCacheDevicePurgePercent] during purge reduce by this many percent

[ProxyConnectPersistMax] connection persistence for this number of connections

[ProxyConnectPersistSeconds] connections persist for this number of seconds

[ProxyConnectTimeoutSeconds] the proxy to origin server connect times-out after this
number of seconds

[ProxyNegativeSeconds] cache negative (failure) responses for this period

[ProxyCacheNoReloadSeconds] prevent pragma reloads for this period

[ProxyCachePurgeList] list of file ages used during purge

[ProxyCacheReloadList] list of file ages before realod from source

[ProxyCacheRoutineHourOfDay] hour of day routine cache purge occurs

[ProxyForwarded] add ‘‘Forwarded:’’ to requests

[ProxyHostLookupRetryCount] DNS resolution retry count

[ProxyReportLog] report failures to process log

[ProxyReportCacheLog] report cache failures to process log

[ProxyServing] enable proxy server

8–6 Global Configuration

[ProxyVerifyRecordMax] enable proxy verification

[ProxyXForwardedFor] add ‘‘X-Forwarded-For:’’ to requests

Reports

[ErrorReportPath] path to script, SSI or ‘‘flat’’ error document

[ErrorRecommend] for server generated error include probable cause

[ReportBasicOnly] only ever generate reports containing basic details

[ReportMetaInfo] add server information to directory listings, etc.

[ServerAdmin] email address for server-related contact

[ServerAdminBodyTag] specify HTML body tag of Server Administration (menu)
pages

[ServerReportBodyTag] specify HTML body tag of error and other report pages

[ServerSignature] add server information to the foot of error and other
report pages

Timeout

[TimeoutHttp2Idle] period an HTTP/2 connection remains without processing
a request

[TimeoutInput] period a connection can wait before sending request

[TimeoutNoProgress] period a response can continue without data transfer
progress

[TimeoutOutput] period a response can continue to output

[TimeoutPersistent] period a connection is kept active after request conclusion

Scripting

[CgiStrictOutput] script output must be CGI compliant

[DclBitBucketTimeout] period a script continues after a client prematurely
disconnects

[DclCgiPlusLifeTime] period of non-use before CGIplus process is deleted

[DclCleanupScratchMinutesMax] maximum minutes between WASD_SCRATCH cleanups

[DclCleanupScratchMinutesOld] cleanup files older than this

[DclDetachProcess] use detached scripting processes rather than subprocesses

[DclGatewayBG] enable raw TCP/IP socket for scripts

[DclHardLimit] maximum number of concurrent processes

[DclScriptProctor] proactive script and scripting environment startup

Global Configuration 8–7

[DclScriptRunTime] script execution environment

[DclSoftLimit] maximum number of processes before proactive deletion
begins

[DclSpawnAuthPriv] spawn subprocesses with account’s authorized privileges

[DclZombieLifeTime] period of non-use before a CGI/CLI process is deleted

[DECnetReuseLifeTime] period of non-use before a DECnet process is released

[DECnetConnectListMax] maximum number of DECnet processes

[Scripting] enables and disables all scripting

Secure Socket

[SecureSocket] enable Secure Socket (TLS/SSL) (if built with SSL)

[SSLcert] server certificate file

[SSLcipherList] list of enabled/disable ciphers

[SSLinstanceCacheMax] multiple instance shared session cache maximum number
of records

[SSLinstanceCacheSize] multiple instance shared session cache size of record

[SSLkey] server certificate private key

[SSLoptions] options flags

[SSLsessionCacheMax] session cache maximum records

[SSLsessionLifetime] session lifetime

[SSLstrictTransSec] HSTS maxiumum age in seconds

[SSLverifyPeer] verify client certificate

[SSLverifyPeerDataMax] maximum kBytes of request data buffered during
renegotiation

[SSLverifyPeerCAFile] file of accepted CAs

[SSLverifyPeerDepth] depth of certificate chain

[SSLversion] TLS/SSL protocol versions supported

Server Side Includes

[SSI] enable Server Side Includes (SSI)

[SSIaccesses] allow access counting

[SSIexec] allow DCL commands

[SSIsizeMax] maximum source file size

8–8 Global Configuration

WebDAV

[WebDAV] enable WebDAV support

[WebDAVCollectionDepth] test locking to this depth

[WebDAVlocking] enable WebDAV locking

[WebDAVlockingTimeoutDefault] set default lock timeout

[WebDAVlockingTimeoutMax] set maximumg lock timeout

[WebDAVmetaDir] location of metadata

[WebDAVquota] enable disk quota reporting

8.2 Alphabetic Listing

1. [Accept] host/domain name (default: all)

One or more (comma-separated if on the same line) internet host/domain names, with
‘‘*’’ wildcarding for host/subdomain matching, to be explicitly allowed access. If DNS
lookup is not enabled hosts must be expressed using literal addresses (see [DNSLookup]
directive). Also see the [Reject] directive. Reject directives have precedence over Accept
directives. The Accept directive may be used multiple times.

Examples:

[Accept]
*.www.example.com
131.185.250.*

2. [ActivityDays] integer (default: 0)

Specifies the number of days to record activity statistics, available in report form from
the Server Administration facility. Zero disables this data collection. The maximum is 28
days. 11520 bytes per day, and 80640 per week, is required to store the per-minute data.

3. [AddIcon] icon-URL ALT-text template (no default)

Specifies a directory listing icon and alternative text for the mime content type specified
in the template.

Examples:

[AddIcon]
/icon/-/doc.gif [HTM] text/html
/icon/-/text.gif [TXT] text/plain
/icon/-/image.gif [IMG] image/gif

4. [AddBlankIcon] icon-URL

[AddDefaultIcon] icon-URL ALT-text

[AddDirIcon] icon-URL ALT-text

[AddParentIcon] icon-URL ALT-text

[AddUnknownIcon] icon-URL ALT-text (no defaults)

Specifies a directory listing icon for these non-content-type parts of the listing.

Examples:

Global Configuration 8–9

[AddBlankIcon] /icon/-/blank.gif _____
[AddDefaultIcon] /icon/-/file.gif [FIL]
[AddDirIcon] /icon/-/dir.gif [DIR]
[AddParentIcon] /icon/-/back.gif [<--]
[AddUnknownIcon] /icon/-/unknown.gif [???]

5. [AddMimeTypesFile] file specification (no default)

Add the content-types of a (de facto) standard MIME.TYPES file to the already configured
[AddType] content-types. This binds a file suffix (extension, type) to a MIME content-
type. Any specification in this file will supercede any previously defined via [AddType].
A MIME.TYPES file looks something like

MIME type Extension
application/msword doc
application/octet-stream bin dms lha lzh exe class
application/oda oda
application/pdf pdf
application/postscript ai eps ps
application/rtf rtf

The WASD server uses a number of extensions to provide additional information. See
Section 4.7.

6. [AddType] .suffix content-type [ftp:] [rfm:] [script-name] [description] (no default)

Binds a file suffix (extension, type) to a mime content type. The script name is used to
auto-script against a specified file type. Use a hyphen as a place-holder and to indicate
no auto-script. The description is used as documentation for directory listings.

[AddType]
.html text/html Web Markup Language
.txt text/plain plain text
.gif image/gif image (GIF)
.hlb text/x-script /Conan VMS Help library
.decw$book text/x-script /HyperReader Bookreader book
* internal/x-unknown application/octet-stream
#* internal/x-unknown text/plain

The content-type string may include a specific character set. In this way non-default sets
(which is usually ISO-8859-1) can be specified for any particular site or any particular
file type. Enclose the content-type string with double-quotation marks.

[AddType]
.html "text/html; charset=ISO-8859-1" HTML (ISO-8859-1)
.html_5 "text/html; charset=ISO-8859-5" Cyrillic HTML (ISO-8859-5)
.html_r "text/html; charset=KOI8-R" Cyrillic HTML (KOI8-R)
.txt "text/plain; charset=ISO-8859-1" plain text (ISO-8859-1)
.txt_5 "text/plain; charset=ISO-8859-5" Cyrillic text (ISO-8859-5)
.txt_r "text/plain; charset=KOI8-R" Cyrillic text (KOI8-R)

To provide additional information for correct handling of FTP transfers the transfer mode
can be indicated after the content type using the FTP: keyword. One of three characters
is used. An ‘‘A’’ indicates that this file type should be FTP transfered in ASCII mode. An
‘‘I’’ or a ‘‘B’’ indicates that this file type should be FTP transfered in Image (binary) mode.

[AddType]
.ps application/postscript ftp:A Postscript document

8–10 Global Configuration

To specify a VMS record format for POST or PUT files use the RFM: keyword following
the content-type. This record format will always be used when creating the file. The
precedence for determining the created file record format is [AddType] RFM:, then any
per-path PUT=RFM= mapping rule, then [PutBinaryRFM], then a default of UDF.

[AddType]
.doc application/msword rfm:STMCR MS Word document

7. [AuthBasic] ENABLED | DISABLED (default: DISABLED)

Enables or disables BASIC username authentication.

8. [AuthCacheEntriesMax] integer (default: 32)

Maximum concurrent authentication cache entries. This needs to be sized adequately to
prevent the cache from thrashing (too many attempted entries causing each to spend very
little time in the cache before being replaced, only to need to be inserted again with the
next attempted access).

9. [AuthCacheEntrySize] integer (default: 768)

Maximum size of an authentication cache entry. The only reason where this may need to
be increased is where a site is using the /PROFILE functionality and one or more accounts
have a particularly large number of rights identifiers.

10. [AuthCacheMinutes] integer (default: 60)

The number of minutes authentication information is cached before being revalidated from
the authentication source. Zero disables caching (with a resultant impact on performance
as each request requiring authentication is validated directly from the source).

11. [AuthDigest] ENABLED | DISABLED (default: DISABLED)

Enables or disables Digest username authentication.

12. [AuthDigestGetLife] integer (default: 0)

The number of seconds a digest nonce for a GET request (read) can be used before
becoming stale.

13. [AuthDigestPutLife] integer (default: 0)

The number of seconds a digest nonce for a PUT (/POST/DELETE ... write) request can
be used before becoming stale.

14. [AuthFailureLimit] integer (default: 0)

The number of unsuccessful attempts at authentication before the username is disabled.
Once disabled any subsequent attempt is automatically refused without further reference
to the authentication source. A disabled username can be reenabled by simply purging
the cache. Parallels the purpose of SYSGEN parameter LGI_BRK_LIM.

15. [AuthFailurePeriod] hh:mm:ss (default: 00:00:00)

The period during which [AuthFailureLimit] is applied. Parallels the purpose of SYSGEN
parameter LGI_BRK_TMO.

16. [AuthFailureTimeout] hh:mm:ss (default: 00:00:00)

Global Configuration 8–11

The period during which which any intrusion aversion is applied. Parallels the purpose
of SYSGEN parameter LGI_HID_TIM.

17. [AuthRevalidateUserMinutes] integer (default: 60)

The number of minutes between authenticated requests that user authentication remains
valid before the user is forced to reenter the authentication information (via browser
dialog). Zero disables the requirement for revalidation.

18. [AuthSysUafAcceptExpPwd] ENABLED | DISABLED (default: DISABLED)

If a SYSUAF authenticated password has expired (password lifetime has been reached)
accept it anyway (in much the same way network logins are accepted in similar circum-
stances). This is very different to account expiry, after which authentication is always
rejected.

19. [AuthSysUafLogonType] LOCAL | DIALUP | NETWORK | REMOTE (default: NETWORK)

When SYSUAF authentication is performed account access restrictions are checked. By
default NETWORK restrictions are used but this global configuration parameter allows
another to be specified.

20. [AuthSysUafPwdExpURL] string (default: none)

If a SYSUAF authenticated password is/has expired the request is redirected to this URL
to change the password.

21. [AuthSysUafUseAcme]

Obsolete for WASD V9.3 and following.

22. [BufferQuotaDclOutput] integer (default: [BufferSizeDclOutput] + 256)

The number of bytes allocated to script SYS$OUTPUT mailbox capacity. The [Buffer-
SizeDclOutput] sets the maximum record size and [BufferQuotaDclOutput] the total num-
ber of bytes that can be outstanding at any given time.

23. [BufferSizeDclCgiHeader] integer (default: 2048)

The number of bytes allocated to store and process a script CGI response header.

24. [BufferSizeDclCgiPlusIn] integer (default: 2048)

The number of bytes (and hence BYTLM quota) permanently allocated to each scripting
process CGIPLUSIN mailbox.

25. [BufferSizeDclCommand] integer (default: 3072)

The number of bytes (and hence BYTLM quota) permanently allocated to each scripting
process SYS$COMMAND mailbox.

26. [BufferSizeDclOutput] integer (default: 4096)

The number of bytes (and hence BYTLM quota) permanently allocated to each scripting
process SYS$OUTPUT mailbox.

27. [BufferSizeNetFile] integer (default: none)

8–12 Global Configuration

The maximum bytes to be allocated to a buffer when transfering file content. For larger
files this can improve both the reading of the file content from disk and when appropriately
tuned to the local system the transmission of that content to the client, significantly
increasing data rates. Limited to the $QIO maximum I/O unit of 65,535 bytes. Bigger is
not always necessarily better (in the sense it always improves data rates).

28. [BufferSizeNetMTU] integer (default: none)

This more esoteric directive attempts to minimise network buffer transmission wastage by
rounding the output buffer size up to the network interface MTU (maximum transmission
unit). This can provide small improvements to transmission efficiency. For example a
filled buffer of 4096 with an MTU of 1500 sends two 1500 byte packets and then one of
1096 bytes, theoretically wasting some 404 bytes. A potentially better choice of buffer size
would be 4500. Setting this directive to 1500 would result in the server automatically
rounding a [BufferSizeNetWrite] value (for example) from 4096 up to 4500.

29. [BufferSizeNetRead] integer (default: 2048)

The number of bytes allocated to the network read buffer (used for request header, POST
body, etc.). Also the number of bytes (and hence BYTLM quota) permanently allocated to
each scripting process SYS$INPUT mailbox (allowing a script to read a request body).

30. [BufferSizeNetWrite] integer (default: 4096)

Number of bytes allocated to the network write buffer. This buffer is used as the basic
unit when transfering file contents (from cache or the file system), as an output buffer
during SSI pocessing, directory listing, etc. During many activities multiple outputs are
buffered into this storage before being written to the network.

31. [Cache] ENABLED | DISABLED (default: DISABLED)

File cache control.

32. [CacheChunkKBytes] integer (default: 0)

Granularity of memory blocks allocated to file data, in kilobytes.

33. [CacheEntriesMax] integer (default: 0)

Maximum number of files loaded into the cache before entries are reused removing the
original contents from the cache.

34. [CacheFileKBytesMax] integer (default: 0)

Maximum size of a file before it is not a candidate for being cached, in kilobytes.

35. [CacheFrequentHits] integer (default: 0)

Minimum, total number of hits an entry must sustain before being a candidate for
[CacheFrequentPeriod] assessment.

36. [CacheFrequentPeriod] hh:mm:ss (default: 00:00:00)

If a file has been hit at least [CacheFrequentHits] times in total and the last was within
the period here specified it will not be a candidate for reuse. See Chapter 11.

37. [CacheGuardPeriod] integer (default: 15)

Global Configuration 8–13

During this period subsequent reloads (no-cache) requests will not result in the entry
being revalidated or reloaded. This can guard period can help prevent unnecessary file
system activity.

38. [CacheEntriesMax] integer (default: 0)

Obsolete for WASD V8.0 and following.

39. [CacheTotalKBytesMax] integer (default: 0)

Maximum memory allocated to the cache, in kilobytes.

40. [CacheValidatePeriod] hh:mm:ss (default: 00:00:00)

The interval after which a cache entry’s original, content revision time is revalidated
against the file’s current revision time. If not the same the contents are declared invalid
and reloaded.

41. [CharsetConvert] string (default: none)

Document and CGI script output can be dynamically converted from one character set
to another using the standard VMS NCS conversion library. This directive provides the
server with character set aliases (those that are for all requirements the same) and which
NCS conversion function may be used to convert one character set into another. The
general format is

document-charset accept-charset[,accept-charset..] [NCS-function-name]

When this directive is configured the server compares each text response’s character set
(if any) to each of the directive’s document charset string. If it matches it then compares
each of the accepted charset (if multiple) to the request ‘‘Accept-Charset:’’ list of accepted
characters sets. If the same is is either accepted as-is or if a conversion function specified
converted by NCS as the document is transfered.

windows-1251 windows-1251,cp-1251
windows-1251 koi8-r koi8r_to_windows1251_to_koi8r
koi8-r koi8-r,koi8
koi8-r windows-1251,cp-1251 koi8r_to_windows1251

42. [CharsetDefault] string (default: none)

The default character set sent in the response header for text documents (plain and
HTML). English language sites should specify ISO-8859-1, other Latin alphabet sites,
ISO-8859-2, 3, etc. Cyrillic sites might wish to specify ISO-8859-5 or KOI8-R, and so on.

43. [CgiStrictOutput] ENABLED | DISABLED (default: DISABLED)

A script must output a full HTTP or CGI-compliant response. If a plain-text stream is
output an error is reported (being the more common behaviour for servers). Errors in
output can be disagnosed using the WATCH facility.

44. [ConnectMax] integer (default: 200)

The maximum number of concurrent client connections before a ‘‘server too busy right
now ... try again shortly’’ error is returned to the client.

45. [DclBitBucketTimeout] hh:mm:ss (default: 0)

8–14 Global Configuration

Period a script is allowed to continue processing before being terminated after a client
prematurely disconnects. An approptiate setting allows most scripts to conclude elegantly
and be available for further use. This improves scripting efficiency significantly. Setting
this period to zero terminates scripts (and their associated processes) immediately a client
is detected as having disconnected.

46. [DclCleanupScratchMinutesMax] integer (default: 0)

Whenever the last scripting process is removed from the system, or this number of
minutes maximum (whichever occurs first), scan the WASD_SCRATCH directory (if logical
defined and it exists) deleting all files that are older than [DclCleanupScratchMinutesOld]
minutes. Setting to zero disables WASD_SCRATCH scans.

47. [DclCleanupScratchMinutesOld] integer (default: 0)

When performing a [DclCleanupScratchMinutesMax] scan delete files that are older than
this value (or the value specified by [DclCleanupScratchMinutesMax], whichever is the
larger).

48. [DclCgiPlusLifeTime] hh:mm:ss (default: 0)

If non-zero the CGIplus process is terminated the specified period after it last processed
a request (idle for that period). Adjusting the period to suit the site allows frequently
used persistent scripts and scripting engines to remain resident while more sporadically
accessed ones do not remain unecessarily. If this value is zero (or unconfigured) the idle
timeout is one hour.

49. [DclDetachProcess] ENABLED | DISABLED (default: DISABLED)

By default scripts are executed within server processes. When enabled this instructs the
server to create detached processes. This side-steps the issues of having pooled process
quotas and also allows non-server-account scripting and in particular ‘‘Scripting Overview,
Introduction’’.

50. [DclDetachProcessPriority] integer[,integer] (default: same as server)

When detached scripting processes are created it is possible to assign them base priorities
lower that the server itself. This directive takes one or two (comma-separated) integers
that determine how many priorities lower than the server scripting processes are created.
The first integer determines server processes. A second, if supplied, determines user
scripts. User scripts may never be a higher priority that server scripts.

[DclDetachProcessPriority] 1
[DclDetachProcessPriority] 0,1
[DclDetachProcessPriority] 1,2

The first of these examples would set both server and user script processes one below the
server process. The second, server scripts at the same priority and user scripts one below.
The last, server scripts one below, and user scripts two below.

51. [DclGatewayBG] ENABLED | DISABLED (default: DISABLED)

When enabled, non-SSL, process script CGI environments have a CGI variable WWW_
GATEWAY_BG created containing the device name (BGnnnn:) of the TCP/IP socket
connected to the client. This socket may be accessed by the script for transmission of
data directly to the script bypassing the server entirely. This is obviously much more

Global Configuration 8–15

efficient for certain classes of script. For purposes of accurate logging the server does
need to be informed of the quantity of data transfered using a CGI callout. See ‘‘Scripting
Environment’’ document.

52. [DclHardLimit] integer (default: 0)

The maximum number of DCL/CGI script processing processes that may ever exist
concurrently (works in conjunction with [DclSoftLimit].

53. [DclScriptProctor] string (default: none)

Script proctoring proactively creates and maintains specific persistent scripts and script-
ing environments (RTEs). It is intended for those environments that have some significant
startup latency.

See ‘‘WASD Web Services - Scripting’’ for further information.

54. [DclScriptRunTime] string (default: none)

One or more file type (extension) specification and scripting verb pairs. See ‘‘Scripting
Overview, Runtime’’.

55. [DclSoftLimit] integer (default: 0)

The number of DCL/CGI script processing processes after which idle processes are deleted
to make room for new ones. The [DclHardLimit] should be approximately 25% more
than the [DclSoftLimit]. The margin exists to allow for occasional slow run-down of
deleted/finishing processes. If these limits are not set (i.e. zero) they are calculated with
[ProcessMax] using ‘‘[DclSoftLimit] = [ProcessMax]’’ and ‘‘[DclHardLimit] = [DclSoftLimit]
+ [DclSoftLimit] / 4’’.

56. [DclSpawnAuthPriv] ENABLED | DISABLED (default: DISABLED)

By default, when a DCL/scripting subprocess is spawned it inherits the server’s currently
enabled privileges, which are none, not even TMPMBX or NETMBX. If this parameter is
enabled the subprocess is created with the server account’s SYSUAF-authorized privileges
(which should never be other than NETMBX and TMPMBX). Use with caution.

57. [DclZombieLifeTime] hh:mm:ss (default: 00:00:00)

If this value is zero the use of persistant DCL processes is disabled. If non-zero the
zombie process is terminated the specified period after it last processed a request. This
helps prevent zombie processes from clogging up a system. See ‘‘Scripting Environment’’
document.

58. [DECnetReuseLifeTime] hh:mm:ss (default: 00:00:00)

Period a DECnet scripting connection is maintained with the network task. Zero disables
connection reuse.

59. [DECnetConnectListMax] integer (default: 0)

The size of the list used to manage connections for DECnet scripting. Zero effectively
allows the server to use as many DECnet scripting connections as demanded.

60. [DirAccess] ENABLED | DISABLED | SELECTIVE (default: DISABLED)

8–16 Global Configuration

Controls directory listings. SELECTIVE allows access only to those directories containing
a file .WWW_BROWSABLE. The WASD HTTPd directory access facility always ignores
directories containing a file named .WWW_HIDDEN. Also see the [DirWildcard] directive.

61. [DirBodyTag] string (default: <BODY>)

Specifies the HTML <BODY> tag for directory listing pages. This allows some measure
of site ‘‘look-and-feel’’ in page colour, background, etc. to be employed.

62. [DirDescriptionLines] integer (default: 0)

Non-Zero enables HTML file descriptions during listings. Generating HTML descrip-
tions involves opening each HTML file and searching for <TITLE>...</TITLE> and
<H1>...</H1> text to generate the description. This is an obviously resource-intensive
activity and on busy servers or systems may be disabled. Any non-zero number specifies
the number of lines to be searched before quitting. Set to a very high number to search
all of files’ contents (e.g. 999999).

63. [DirLayout] string (default: I_ _L_ _R_ _S_ _D)

Allows specification of the directory listing layout. This is a short, case-insensitive string
that specifies the included fields, relative placement and optionally the width of the fields
in a directory listing. Each field is controlled by a single letter and optional leading
decimal number specifying its width. If a width is not specified an appropriate default
applies. An underscore is used to indicate a single space and is used to separate the fields
(two consecutive works well).

C - creation date
D - description (generally best specified last)

D:L - for files, make a link out of the description text
I - icon (takes no field-width attribute)

L - link (highlighted anchor using the name of the file)
L:F - file-system name (for ODS-5 displays spaces, etc.)
L:N - name-only, do not display the extension
L:U - force name to upper-case

N - name (no link, why bother? who knows!)
O - owner (can be disabled)
R - revision date
S - size

S:B - in bytes (comma-formatted)
S:D - decimal kilos (see below)
S:F - kilo and mega are displayed to one decimal place
S:K - in kilo-bytes (and fractions thereof)
S:M - in mega-bytes (and fractions thereof)

U - upper-case file and directory names (must be the first character)

The following shows some examples:

Global Configuration 8–17

[DirLayout] I__L__R__S__D
[DirLayout] I__L__R__S:b__D
[DirLayout] I__15L__S__D
[DirLayout] UI__15L__S__D
[DirLayout] 15L__9R__S
[DirLayout] 15N_9C_9R_S
[DirLayout] I__L__R__S:d__D
[DirLayout] 25D:l__S:b__C__R

The size of files is displayed by default as 1024 byte kilos. When using the ‘‘S:k’’, ‘‘S:m’’
and ‘‘S:f’’ size modifiers the size is displayed as 1000 byte kilos. If it is prefered to have
the default display in 1000 byte kilos then set the directory listing layout using:

[DirLayout] I__L__R__S:d__D

If unsure of the kilo value being used check the ‘‘<META>’’ information in the directory
listing.

64. [DirMetaInfo] ENABLED | DISABLED (default: DISABLED)

Includes, as <META> information, the software ID of the server and any relevant VMS
file information.

65. [DirNoImpliedWildcard] ENABLED | DISABLED (default: DISABLED)

When a directory is accessed having no file or type component and there is no welcome
page available a directory listing is generated. By default any other directory accessed
from this listing has the implied wildcards "*.*" added, consequently forcing directory
listings. If enabled, this directive ensures no wildcards are added, so subsequent
directories accessed with welcome pages display the pages, not a forced listing.

66. [DirNoPrivIgnore] ENABLED | DISABLED (default: DISABLED)

To prevent browsing through directories (perhaps due to inadvertant mapping) that have
file permissions allowing no WORLD access the server stops listing and reports the error
the first time a protection violation occurs. This behaviour may be changed to ignore the
violation, listing only those files to which it has access.

67. [DirOwner] ENABLED | DISABLED (default: DISABLED)

Allows specification and display of the RMS file owner information.

68. [DirPreExpired] ENABLED | DISABLED (default: DISABLED)

Directory listings and trees may be pre-expired. That is, the listing is reloaded each
time the page is referenced. This is convenient in some environments where directory
contents change frequently, but adds considerable over-head and so is disabled by default.
Individual directory listings may have the default behaviour over-ridden using syntax
similar to the following examples:

/dir1/dir2/*.*?httpd=index?expired=yes
/dir1/dir2/*.*?httpd=index?expired=no
/tree/dir2/?httpd=index?expired=yes
/tree/dir1/dir2/?httpd=index?expired=no

69. [DirReadme] TOP | BOTTOM | OFF (default: DISABLED)

8–18 Global Configuration

If any of the files provided using the [DirReadMeFile] directive are located in the directory
the contents are included at the top or bottom of the listing (or not at all). Plain-text
are included as plain-text, HTML are included as HTML allowing markup tags to be
employed.

70. [DirReadMeFile] FILE.SUFFIX (no default)

Specifies the names and order in which a directory is checked for read-me files. This
can be enabled or disabled using the [DirReadme] directive. Plain-text are included as
plain-text, HTML are included as HTML allowing markup tags to be employed.

Examples:

[DirReadMeFile]
readme.html
readme.htm
readme.
readme.txt
readme.1st

71. [DirWildcard] OFF | ON (default: DISABLED)

This enables the facility to force the server to provide a directory listing by providing a
wildcard file specification, even if there is a home (welcome) document in the directory.
This should not be confused with the [DirAccess] directive which controls directory listing
itself.

72. [DNSLookupClient] ENABLED | DISABLED (default: DISABLED)

Enables or disables connection request host name resolution. This functionality may
be expensive (in terms of processing overhead) and make serving granularity coarser if
DNS is involved. If not enabled and logging is, the entry is logged against the literal
internet address. If not enabled any [Accept], [Reject] or conditional directive, etc., must
be expressed as a literal address.

73. [DNSLookupLifetime] hh:mm:ss default 00:10:00

The period for which a host name/address is cached (applies to both client lookup and
proxy host lookup).

74. [DNSLookupRetry] integer (default: 2)

The number of attempts, at two second intervals, made to resolve a host name/address
(applies to both client lookup and proxy host lookup).

75. [EntityTag] ENABLED | DISABLED (default: ENABLED)

An entity tag is a client-opaque string used in strong cache validation. WASD generates
this using the on-disk file identification (FID) and binary last-modified date-time (RDT).
This is then used as a definitive identifier for a specified on-disk resource fixed in file-
system space-time (hmmm, sounds like an episode of Star Trek).

76. [ErrorReportPath] string [status...] (default: none)

Specifies the URL-format path to an optional, error reporting SSI document or script.
See Section 4.10. This path can subsequently be remapped during request processing.
Optional, space-separated HTTP status codes restrict the path to those codes, with the
remainder handled by server-internal reporting.

Global Configuration 8–19

77. [ErrorRecommend] ENABLED | DISABLED (default: DISABLED)

Provides a short message recommending action when reporting an error to a client. For
example, if a document cannot be found it may say:

(document, or bookmark, requires revision)

78. [GzipAccept] integer (default: 0)

Enables GZIP encoding of request bodies. See Section 4.4.

79. [GzipFlushSeconds] integer (default: 0)

Adjusts the maxiumum period period between GZIP buffer flushes. See Section 4.4.

80. [GzipResponse] integer[integer,integer] (default: 0)

Enables GZIP encoding (deflation) for suitable requests and responses. Valid values are
1 for minimum compression (and minimum resource usage) through to 9 for maxiumum
compression (and maximum resource usage). The value 9 is recommended. See Sec-
tion 4.4.

81. [Http2Protocol] enable | disable (default: disable))

Enable or disable (default) HTTP/2 for all services. The default for a service follows the
global setting. A service must explicitly disable HTTP/2 if that is required.

82. [Http2FrameSizeMax] integer (default: 65535)

The maximum permitted size (in octets) of an HTTP/2 frame sent from the client.

83. [Http2HeaderListMax] integer (default: 65535)

The maximum permitted size (in bytes) of a request header sent from the client.

84. [Http2HeaderTableMax] integer (default: 4096)

The maximum permitted size (in bytes) of a request header compression table.

85. [Http2PingSeconds] hh:mm:ss (default: 00:05:00)

The period at which HTTP/2 pings are sent from the server to the client to calculate the
(then) Round Trip Time (RTT) of the connection.

86. [Http2StreamMax] integer (default: 32)

Maximum number of concurrent streams (requests) supported by the connection.

87. [Http2InitWindowSize] integer (default: 65535)

Initial flow-control window size (in bytes).

88. [InstanceMax] integer | CPU (default: 1)

Number of per-node server processes to create and maintain. If set to ‘‘CPU’’ once instance
per CPU is created.

89. [InstancePassive] ENABLED | DISABLED (default: DISABLED)

Start a multiple instance server already in passive mode.

90. [Logging] ENABLED | DISABLED (default: DISABLED)

8–20 Global Configuration

Enables or disables the request log. Logging can slow down request processing and
adds overhead. The log file name must be specified using the /LOG qualifier or WASD_
CONFIG_LOG logical name (Section 3.5).

91. [LogExcludeHosts] string (default: none)

One or more (comma-separated if on the same line) internet host/domain names, with ‘‘*’’
wildcarding for host/subdomain matching, requests from which are not placed in any log
files. If DNS lookup is not enabled hosts must be expressed using literal addresses (see
[DNSLookup] directive). Use for excluding local or web-maintainer’s host from logs.

Example:

[LogExcludeHosts]
*.www.example.com
131.185.250.*

92. [LogExtend] integer (default: 0)

Number of blocks allocated when when a log file is opened or extended. If set to zero it
uses the process default (SET RMS_DEFAULT /EXTEND_QUANTITY).

93. [LogFile] string (default: none)

Provides some or all of the access log file name. See Section 4.12.2.

94. [LogFormat] string (default: COMMON)

Specifies one of three pre-defined formats, or a user-definable format. See Section 4.12.1.

95. [LogNaming] string (default: none)

When [LogPeriod] or [LogPerService] directives are used to generate multiple log files
this directive may be used to modify the naming of the file. See Section 4.12.5.

96. [LogPeriod] string (default: none)

Specifies a period at which the log file is changed. See Section 4.12.2.

97. [LogPerInstance] ENABLED | DISABLED (default: DISABLED)

When multiple instances are configured (see ‘‘WASD Web Services - Features and Facili-
ties’’). create a separate log for each. This has significant performance advantages. See
Section 4.12.4.

98. [LogPerService] ENABLED | DISABLED (default: DISABLED)

When multiple services are specified (Section 4.3) a separate log file will be created for
each if this is enabled. See Section 4.12.3.

99. [LogPerServiceHostOnly] ENABLED | DISABLED (default: DISABLED)

When generating a log name do not make the port number part of it. This effectively
provides a single log file for all ports provided against a host name (e.g. a standard
HTTP service on port 80 and an SSL service on port 443 would have entries in the one
file). See Section 4.12.3.

100. [LogWriteFail503] ENABLED | DISABLED (default: DISABLED)

Global Configuration 8–21

After an access log record fails to write all subsequent requests return a 503 service
unavailable response until records can be successfully written again. This can be used to
prevent access to server resources unless an access audit log is available.

101. [Monitor] ENABLED | DISABLED (default: DISABLED)

Allows monitoring via the HTTPDMON utility. Adds slight request processing overhead.

102. [OpcomAdmin] ENABLED | DISABLED (default: DISABLED)

Report to operator log and any enabled operator console (see [OpcomTarget]) server
administration directives originating from the Server Administration Menu, for example
path map reload, server restart, etc.

103. [OpcomAuthorization] ENABLED | DISABLED (default: DISABLED)

Report events related to authentication/authorization. For example username-password
validation failures.

104. [OpcomControl] ENABLED | DISABLED (default: DISABLED)

Report HTTPD/DO=directive control events, both the command-line directive and the
server’s response.

105. [OpcomHTTPd] ENABLED | DISABLED (default: DISABLED)

Report events concerning the server itself. For example, server startup and exit (either
normally or with error status).

106. [OpcomProxyMaint] ENABLED | DISABLED (default: DISABLED)

Report events related to proxy server cache maintenance. For example, the commence-
ment of file cache reactive and proactive purging, the conclusion of this purge, both with
cache device statistics.

107. [OpcomTarget] string (default: DISABLED)

This enables OPCOM messaging and specifies the target for the OPCOM reports.
This must be set to a target to enable OPCOM messages, irrespective of the set-
ting of any of the other [Opcom...] directives. These messages are added to
SYS$MANAGER:OPERATOR.LOG and displayed at the specified operator’s console if
enabled (using REPLY/ENABLE=target). The operator log provides a ‘‘permanent’’
record of server events. Possible settings include CENTRAL, NETWORK, SECURITY,
OPER1 . . . OPER12, etc.

108. [PipelineRequests] ENABLED | DISABLED (default: ENABLED)

Pipelining refers to multiple requests being sent over an assumed persistent connection
without waiting for the response from previous requests. Such behaviour with capable
clients and servers can significantly reduce response latency.

109. [Port] integer (default: 80)

IP port number for server to bind to. For anything other than a command-line server
control this parameter is overridden by anything supplied via the [Service] (deprecated)

directive.

110. [ProcessMax] integer (default: 100)

8–22 Global Configuration

The maximum number of concurrent client request being processed before a ‘‘server too
busy right now ... try again shortly’’ error is returned to the client. If not explicitly set
this defaults to the same value as [ConnectMax]. This directive allows a larger number
of persistent connections to be maintained than are concurrently being processed at any
given moment.

111. [ProxyCache] ENABLED | DISABLED (default: DISABLED)

Enables or disables proxy caching on a whole-of-server basis, irrespective of any proxy
services that might be configured for caching.

112. [ProxyCacheFileKBytesMax] integer (default: 256)

Maximum size of a cache file in kilobytes before it will not be cached.

113. [ProxyCacheNegativeSeconds] hh:mm:ss (default: 00:05:00)

Negative (unsuccessful) responses are cached for this period.

114. [ProxyCacheRoutineHourOfDay] integer (default: 0)

Hour of day for routine cache purge (00-23).

115. [ProxyCacheDeviceCheckMinutes] integer (default: 15)

Interval in minutes between checking space availablility on cache device. If space is not
available a reactive purge is initiated.

116. [ProxyCacheDeviceDirOrg] FLAT256 | 64X64 (default: FLAT256)

Organization of directories on the proxy cache device. The first provides a single level
structure with a possible 256 directories at the top level and files organized immediately
below these. For versions of VMS prior to V7.2 exceeding 256 files per directory, or a total
of approximately 65,000 files, incurs a significant performance penalty for some directory
operations. The second organization involves two levels of directory, each with a maximum
of 64 directories. This allows for approximately 1,000,000 files before encountering the
256 files per directory issue.

117. [ProxyCacheDeviceMaxPercent] integer (default: 85)

The maximum percentage in use on the cache device before a reactive purge is scheduled.
If device usage exceeds this limit no more cache files are created.

118. [ProxyCacheDevicePurgePercent] integer (default: 1)

The percentage by which the cache device usage is attempted to be reduced when a reactive
purge is initiated.

119. [ProxyCacheNoReloadSeconds] integer (default: 0)

Prevents pragma reloads actually retrieving the file from the source host again until the
period expires. This is designed to limit concurrent or repeated reloads of files into the
cache unecessarily. Thirty seconds is probably an adequate period balancing effect against
a user legitimately needing to recache the document.

120. [ProxyCachePurgeList] string (default: 168,48,24,8,0)

A list of comma-separated integers representing the sequence of last accessed period in
hours used during a progressive reactive purge.

Global Configuration 8–23

121. [ProxyCacheReloadList] string (default: 1,2,4,8,12,24,48,96,168)

A list of comma-separated integers representing the sequence of age in hours used when
determining whether a cache file’s contents should be reloaded.

122. [ProxyConnectPersistMax] integer (default: 100)

The maximum number of established connections that are maintained to remote servers.

123. [ProxyConnectPersistSeconds] hh:mm:ss (default: 00:00:30)

Period for which the established connections persist. At expiry the connection is closed.

124. [ProxyConnectTimeoutSeconds] hh:mm:ss (default: 00:00:30)

Period for which the proxy server will attempt to establish a network connection to the
origin (remote) server.

125. [ProxyForwarded] BY | DISABLED | FOR | ADDRESS (default: DISABLED)

BY enables the addition of a proxy request header line providing information that
the request has been forwarded by another agent. The added header line would
look like ‘‘Forwarded: by http://server.name.domain (HTTPd-WASD/n.n.n OpenVMS/AXP
Digital-TCPIP SSL)’’. If the FOR variant is used the field included the host name
(or ADDRESS) the request is being forwarded on behalf of, as in ‘‘Forwarded: by
http://server.name.domain (HTTPd-WASD/n.n.n OpenVMS/AXP Digital-TCPIP SSL) for
host.name.domain’’.

126. [ProxyHostLookupRetryCount] integer (default: 0)

When the server is resolving the name of a remote host the request may timeout due
to up-stream DNS server latencies. This parameter allows a number of retries, at five
second intervals, to be enabled.

127. [ProxyReportLog] ENABLED | DISABLED (default: DISABLED)

Enables or disables the server process log reporting siginificant proxy processing events,
such as cache maintenance activity.

128. [ProxyReportCacheLog] ENABLED | DISABLED (default: DISABLED)

Enables or disables the server process log reporting of proxy caching activity.

129. [ProxyServing] ENABLED | DISABLED (default: DISABLED)

Enables or disables proxy serving on a whole-of-server basis, irrespective of any proxy
services that might be configured.

130. [ProxyUnknonwRequestFields] ENABLED | DISABLED (default: DISABLED)

When enabled propagates all request fields provided by the client through to the proxied
server. When disabled only propagates fileds that WASD recognises.

131. [ProxyVerifyRecordMax] integer (default: 0)

Obscure functionality; see WASD Proxy Service feature.

132. [ProxyXForwardedFor] ADDRESS | DISABLED | ENABLED | UNKNOWN (default: DISABLED)

8–24 Global Configuration

Enables the addition of a proxy request header line providing the host name on behalf of
which the request is being proxied. The added header line would look like ‘‘X-Forwarded-
For: host.name.domain’’. THE ADDRESS variant provides the IP address, and the
UNKNOWN variant substitutes ‘‘unknown’’ for the host. This field is degined to be
compatible with the Squid de facto standard field of the same name. Any request with an
existing ‘‘X-Forwarded-For:’’ field has the local information appended to the existing as a
comm-separated list. The first host in the field should be the original requesting client.

133. [PutBinaryRFM] FIX512 | STM | STMCR | STMLF | UDF (default: UDF)

Record format for a non-text HTTP POST or PUT upload into the file-system. Has a
per-path equivalent. The precedence for determining the created file record format is
[AddType] RFM:, then any per-path PUT=RFM= mapping rule, then [PutBinaryRFM],
then the default of UDF.

134. [PutMaxKBytes] integer (default: 250)

Maximum size of an HTTP POST or PUT method request in Kilobytes. Has a per-path
equivalent.

135. [PutVersionLimit] integer (default: 3)

File created using the POST or PUT methods have the specified version limit applied.

136. [RegEx] ENABLED | DISABLED (default: DISABLED)

Enable regular expression matching. With the possibility of the reserved character ‘‘^’’
being used in existing mapping rules regular expression string matching (Chapter 6) is
only available after enabling this directive.

The default syntax is POSIX EGREP but can be specified by substituting for ENABLED

one of the following keywords; AWK, ED, EGREP, GREP, POSIX_AWK, POSIX_BASIC,
POSIX_EGREP, POSIX_EXTENDED, POSIX_MINIMAL_BASIC, POSIX_MINIMAL_EXTENDED,
SED. When changed from the default enabled (WASD) case-insensitivity is lost.

137. [Reject] host/domain name (default: none)

One or more (comma-separated if on the same line) internet host/domain names, with ‘‘*’’
wildcarding for host/subdomain matching, to be explicitly denied access. If DNS lookup is
not enabled hosts must be expressed using literal addresses (see [DNSLookup] directive).
Also see the [Accept] directive. Reject directives have precedence of Accept directives.
The Reject directive may be used multiple times.

Example:

[Reject]
*.www.example.com
131.185.250.*

138. [ReportBasicOnly] ENABLED | DISABLED (default: DISABLED)

Only ever supply basic information in a report (Section 4.10).

139. [ReportMetaInfo] ENABLED | DISABLED (default: DISABLED)

Includes in detailed reports, as <META> information, the software ID of the server and
any relevant VMS file information.

Global Configuration 8–25

140. [RequestHistory] integer (default: 0)

The server can keep a list of the most recent requests accessible from the Server
Administration page. This value determines the number kept. Zero disables the facility.
Each retained request consumes 256 bytes and adds a small amount of extra processing
overhead.

141. [Scripting] ENABLED | DISABLED (default: ENABLED)

Enables and disables all scripting mechanisms. This includes CGI and CGIplus, DECnet-
based OSU and CGI, and SSI directives that DCL processes to provide <–#dcl –>, <–#exec
–>, etc.

142. [SearchScript] path (no default)

Specifies the URL-format path to the default query-string keyword search script. This
path can subsequently be remapped during request processing.

Example:

[SearchScript] /wasd_root/script/query

143. [SearchScriptExclude] list (no default)

Provides a list of file types that are excluded from an implied keyword search. This is
useful for client-side (browser-side) active processing that may require a query string to
pass information. This query string would normally be detected by the server and if not in
a format to be meaningful to itself is then considered as an implied (HTML <ISINDEX>)
keyword search, with the approriate script being activiated.

Example:

[SearchScriptExclude] .HTA,.HTL

144. [SecureSocket] ENABLED | DISABLED (default: DISABLED)

Enable the Secure Sockets Layer (SSL) Transport Layer Security (TLS) if the server has
been built with that option. See ‘‘WASD Web Services - Features and Facilities’’ .

145. [ServerAdmin] string (no default)

Specifies the contact email address for server administration issues. Included as a
‘‘mailto:’’ link in the server signature if [ServerSignature] is set to email.

146. [ServerAdminBodyTag] string (default: <BODY>)

Specifies the HTML <BODY> tag for server administration and administration report
pages. This allows some measure of control over the ‘‘look-and-feel’’ of page and link
colour, etc.. for the administrator.

147. [ServerReportBodyTag] string (default: <BODY>)

Specifies the HTML <BODY> tag for server error and other report pages. This allows
some measure of site ‘‘look-and-feel’’ in page colour, background, etc. to be maintained.

148. [ServerSignature] ENABLED | EMAIL | DISABLED (default: DISABLED)

8–26 Global Configuration

The server signature is a short identifying string added to server generated error and
other report pages. It includes the server software name and version, along with the host
name and port of the service. Setting this to email makes the host name a mailto: link
containing the address specified by the [ServerAdmin] directive.

149. [Service] string (no default) (deprecated)

This parameter allows SSL, multi-homed hosts and multiple port serving to be specified.

150. [ServiceNotFoundURL] string (no default)

Provides a default path for reporting a virtual host does not exist, see Section 4.3.2.

151. [SocketSizeRcvBuf] integer (no default)

Number of bytes allocated at the device-driver level for a network connection receive
buffer. See Chapter 3.

152. [SocketSizeSendBuf] integer (no default)

Number of bytes allocated at the device-driver level for a network connection send buffer.
Later versions of TCP/IP Services seem to have large default values for this. MultiNet and
TCPware are reported to improve transfers of large responses by increasing low default
values. See Chapter 3.

153. [SSI] ENABLED | DISABLED (default: DISABLED)

Enables or disables Server Side Includes (HTML pre-processing).

154. [SSIaccesses] ENABLED | DISABLED (default: DISABLED)

Enables or disables Server Side Includes (HTML pre-processing) file access counter.

155. [SSIexec] ENABLED | DISABLED (default: DISABLED)

Enables or disables Server Side Includes (HTML pre-processing) DCL execution function-
ality.

156. [SSIsizeMax] integer (default: 0 (128kB))

SSI source files a completely read into memory before processing. This allows the
maximum size to be expanded beyond the default.

157. [SSLcert] string (no default)

TLS/SSL Configuration
See ‘‘WASD Web Services - Features and Facilities’’ .
Server command line /SSL= parameter equivalents override the [SSL..] directives.

TLS/SSL server certificate file path.

158. [SSLcipherList] string (no default)

A colon-separated list (OpenSSL syntax) of TLS/SSL ciphers allowed to be used by clients
to connect to SSL services. The use of this parameter might allow the selection of stronger
ciphers to be forced to be used or the connection not allowed to procede.

159. [SSLinstanceCacheMax] integer (no default)

Global Configuration 8–27

TLS/SSL multiple WASD instance, shared session cache. Maximum number of shared
records.

160. [SSLinstanceCacheSize] integer (no default)

TLS/SSL multiple WASD instance, shared session cache. Size in bytes of each individual
record.

161. [SSLkey] string (no default)

TLS/SSL server certificate private key file path. The private key is commonly enbedded
into the certificate file.

162. [SSLoptions] string (no default)

Alphanumeric flags supported by WASD or hexadecimal value applied to the SSL option
of OpenSSL.

163. [SSLsessionCacheMax] integer (no default)

Single WASD instance, shared session cache. Maximum number of records. Records are
dynamically sized.

164. [SSLsessionLifetime] hh:mm:ss (no default)

The default maximum period for session reuse is five minutes. This may be set
globally using the this directive or on a per-service basis using the per-service equivalent
[ServiceSSLsessionLifetime].

165. [SSLstrictTransSec] hh:mm:ss (no default)

When non-zero represents the number of seconds, or maximum age, of a HSTS ‘‘Strict-
Transport-Security:’’ response header field. See ‘‘WASD Web Services - Features and
Facilities’’ . There is an equivalent per-service directive.

166. [SSLverifyPeer] ENABLED | DISABLED (default: DISABLED)

To access this service a client must provide a verified CA client certificate.

167. [SSLverifyPeerCAfile] string (default: none)

Specifies the location of the collection of Certificate Authority (CA) certificates used to
verify a peer certificate (VMS file specification).

168. [SSLverifyPeerDataMax] integer (default: 1024)

When a client certificate is requested for authentication via TLS/SSL renegotiation this is
the maximum kilobytes POST/PROPFIND/PUT data buffered during the renegotiation.
There is an equivalent per-service directive.

169. [SSLverifyPeerDepth] integer (default: 0)

Level through a certificate chain a client is verified to.

170. [SSLversion] string (default: TLS family of protocols)

The abbreviation for the TLS/SSL protocol version allowed to be used to connect to an
SSL service. Using the directive a service may select prefered protocols.

171. [StreamLF] integer (default: 0 (disabled))

8–28 Global Configuration

Enables or disables automatic conversion of VARIABLE record format documents (files) to
STREAM-LF, which are much more efficient with this server. The integer is the maximum
size of a file in kilobytes that the server will attempt to convert. Zero disables any
conversions.

172. [StreamLFpaths] string (no default)

(Retired in v5.3, mapping SET rule provides this now, see Section 12.5.5).

173. [TimeoutHttp2idle] hh:mm:ss (default: 01:00:00)

The maximum period of time before an idle HTTP/2 connection is issued with a GOAWAY
frame. An idle HTTP/2 connection is one where it has not processed a request.

174. [TimeoutInput] hh:mm:ss (default: 00:01:00)

Period allowing a connection request to be in progress without submitting a complete
request header before terminating it.

175. [TimeoutPersistent] hh:mm:ss (default: 0)

The period a persistent connection with the client is maintained after the conclusion of
a request. Connection persistence improves the overall performance of the server by
reducing the number of discrete TCP/IP connections that need to be established.

176. [TimeoutNoProgress] hh:mm:ss (default: 00:02:00)

Period allowing request output to continue without any increase in the number of bytes
transfered. This directive is targeted at identifying and eliminating requests that have
stalled.

177. [TimeoutOutput] hh:mm:ss (default: 00:10:00)

Period allowing a request to be output before terminating it. This directive sets an
absolute maximum time a request can continue to receive output.

178. [WebDAV] ENABLED | DISABLED (default: DISABLED)

Enable WEBdav on a server-wide basis (see ‘‘WASD Web Services - Features and Facili-
ties’’).

179. [WebDAVlocking] ENABLED | DISABLED (default: DISABLED)

Enable WebDAV locking.

180. [WebDAVlockCollectionDepth] integer (default: 0)

Ancestor directory locking depth.

181. [WebDAVlockTimeoutDefault] ddd-hh:mm:ss (default: 01:00:00)

Set default locking period.

182. [WebDAVlockTimeoutMax] ddd-hh:mm:ss (default: 7-00:00:00)

Maximum locking period.

183. [WebDAVmetaDir] string (default: same as data file)

Location of metadata files.

Global Configuration 8–29

184. [WebDAVquota] ENABLED | DISABLED (default: DISABLED)

Enable disk quota reporting.

185. [Welcome] file.suffix (no default)

Specifies the names and order in which a directory is checked for home page files. If no
home page is found a directory listing is generated.

[Welcome]
index.html
index.htm
home.html
home.htm

Dynamic home pages (script or interpreter engine driven, e.g. Perl, PHP) may be deployed
using a combination of the [Welcome] and [DclScriptRunTime] directives.

[Welcome]
index.html
index.htm
index.php
index.pl

[DclScriptRunTime]
.PHP $CGI-BIN:[000000]PHPWASD.EXE
.PL $CGI-BIN:[000000]PERLRTE

186. [WWWimplied] ENABLED | DISABLED (default: (DISABLED))

When enabled considers www.host.name and host.name to be the same virtual service. If
a request being processed has a virtual host of www.host.name and the service matching,
rule matching or authentication matching process encounters a host.name virtual service
it is considered match. A request with a virtual host of host.name does not match a service
of www.host.name.

8–30 Global Configuration

Chapter 9

Service Configuration

By default, the logical name WASD_CONFIG_SERVICE locates a common service config-
uration file. The service configuration file is optional. If the WASD_CONFIG_SERVICE
logical is not defined or the file does not exist service configuration is made using the WASD_
CONFIG_GLOBAL [Service] (deprecated) directives. For simple sites, those containing one
or two services, the use of a separate service configuration file is probably not warranted.
Once the number begins to grow this file offers a specific management interface for those
services.

Precedence of service specifications:

1. /SERVICE= command line qualifier

2. WASD_CONFIG_SERVICE configuration file (if logical defined and file exists)

3. WASD_CONFIG_GLOBAL [Service] directive (deprecated)

WASD services are also known as virtual servers or virtual hosts and can provide multiple,
autonomous sites from the one HTTP server. Services can each have an independent IP
address or multiple virtual sites share a single or set of multiple IP addresses. Whichever
the case, the host name entered into the browser URL must able to be resolved to the IP
address of an interface configured on the HTTP server system. There is no design limit to
the number of services that WASD can support. It can listen on any number of IP ports and
for any number of virtual services for any given port.

The server must be able to resolve its own host name/address. It is not unknown for
completely new systems to have TCP/IP configuration overlooked. The server must also be
able to resolve the IP addresses of any configured virtual services (Section 4.3). Failure to do
so will result in the service not being configured. To avoid startup issues in the absence of
a usable DNS it is suggested that for fundamental, business-critical or otherwise important
services, static entries be provided in the system TCP/IP agent’s local database.

Changes to the service configuration file can be validated at the command-line before restart.
This detects and reports any syntactical and fatal configuration errors but of course cannot
check the intent of the rules.

$ HTTPD /DO=SERVICE=CHECK

Service Configuration 9–1

9.1 Specific Services
In common with other configuration files, directives associated with a specific virtual services
are introduced using a double-bracket delimited host specification (Section 4.3). When
configuring a service the following three components specify the essential characteristics.

• scheme - HTTP scheme (sometimes refered to as protocol). If http: (or omitted) it is a
standard HTTP service. If https: an SSL service is configured.

• host - Host name or dotted-decimal address. If omitted, or specified as an asterisk (‘‘*’’),
defaults to the system’s IP host name.

• port - IP port the service is offered on. If omitted it defaults to 80 for an http: service,
and to 443 for an https: (SSL) service.

These WASD_CONFIG_SERVICE examples illustrate the directive.

[[http://alpha.example.com:80]]
[[http://alpha.example.com:8080]]

9.2 Generic Services
A generic service is one that specifies a scheme and/or port but no specific host name. This is
useful in a cluster where multiple systems all provide a basic service (e.g. a port 80 service).
If the host name is omitted or specified as an asterisk the service substitutes the system’s IP
host name.

[[http://*:80]]
[[http://*:8080]]

9.3 SSL Services
See ‘‘WASD Web Services - Features and Facilities’’ .

Multiple virtual SSL services (https:) sharing the same certificate can essentially be con-
figured against any host name (unique IP address or alias) and/or port in the same way as
standard services (http:). Services requiring unique certificates can only be configured for the
same port number against individual and unique IP addresses (i.e. not against aliases). This
is not a WASD restriction, it applies to all servers for significant SSL technical reasons.

For example, unique certificates for https://www.company1.com:443/ and https://www.company2.com:443/
can be configured only if COMPANY1 and COMPANY2 have unique IP addresses. If COM-
PANY2 is an alias for COMPANY1 they must share the same certificate. During startup ser-
vice configuration the server checks for such conditions and issues a warning about ‘‘sharing’’
the service with the first configured.

[[https://alpha.example.com]]
[[https://*:443]]

9–2 Service Configuration

9.4 Administration Services
When multiple instances are configured Server Administration page access, in common with
all request processing, is automatically shared between those instances. There are occasions
when consistent access to a single instance is desirable. The [ServiceAdmin] directive
indicates that the service port number should be used as a base port and all instances create
their own service with unique port for access to that instance alone. The first instance
to create an administration service uses the specified port, or the next successive if it’s
already in use, the next instance will use the next available port number, and so on. A
high port number should be specified. The Server Administration page lists these services
for all server instances in the cluster. This port configuration is not intended for general
request activity, although with appropriate mapping and other configuration there is nothing
specifically precluding the use (remembering that the actual port in use by any particular
instance may vary across restarts). In all other respects the services can (and should) be
mapped, authorized and otherwise configured as any other.

[[https://alpha.example.com]]
[ServiceAdmin] enabled

9.5 IPv4 and IPv6
Both IP version 4 and 6 are concurrently supported by WASD. All networking functionality,
service creation, SSL, proxy HTTP, proxy FTP and RFC1413 authorization is IPv6 enabled.
If system TCP/IP services do not support IPv6 the expected error would be

%SYSTEM-F-PROTOCOL, network protocol error

during any attempted IPv6 service creation. Of course IPv4 service creation would continue
as usual.

Server configuration handles the standard dotted-decimal addresses of IPv4, as well as
‘‘normal’’ and ‘‘compressed’’ forms of standard IPv6 literal addresses, and a (somewhat)
standard variation of these that substitutes hyphens for the colons in these addresses to
allow the colon-delimited port component of a ‘‘URL’’ to be resolved. Alteratively, use the de
facto standard method of enclosing the IPv6 address within square brackets, followed by any
port component.

IPv6 Literal Addresses

Normal Compressed

1070:0:0:0:0:800:200C:417B 1070::800:200C:417B

0:0:0:0:0:0:13.1.68.3 ::13.1.68.3

0:0:0:0:0:FFFF:129.144.52.38 ::FFFF:129.144.52.38

hyphen-variants

1070-0-0-0-0-800-200C-417B 1070–800-200C-417B

Service Configuration 9–3

hyphen-variants

0-0-0-0-0-0-13.1.68.3 –13.1.68.3

0-0-0-0-0-FFFF-129.144.52.38 –FFFF-129.144.52.38

In common with all virtual services, if a connection can be established with the system and
service port the server can respond to that request. The first example binds a service to
accept IPv4 connections for any address, while the second the same for IPv6 (and for IPv4 if
the interface has IPv4 configuration).

[[https://alpha.example.com:80]]
[ServiceBind] 0.0.0.0

[[https://alpha6.example.com:80]]
[ServiceBind] ::0

If a service needs to be bound to a specific IP address then that can be specified using the
[ServiceBind] directive using any of the literal address formats described above.

[[http://alpha.example.com:80]]
[ServiceBind] 168.192.0.3

[[https://alpha6.example.com:80]]
[ServiceBind] fe80::200:f8ff:fe24:1a22

[[https://[fe80::200:f8ff:fe24:1a22]:80]]

IPv6 Name Resolution

TCP/IP Services for OpenVMS does not provide an asynchronous name resolution ACP call
for IPv6 as it does for IPv4. This means that dynamic name resolution in IPv6 environments
is (currently) an issue. See the server code module [SRC.HTTPD]TCPIP6.C for further detail
and workarounds. Let’s hope this significant deficiency in VMS’ IPv6 support is addressed
sooner than later!

9.6 To www. Or Not To www.
In the twenty-first century the www. prefix to Web services is largely redundant. Generally
www.host.name and host.name are treated as synonymous. WASD conditionals often need to
distinguish precisely on the service name and in some cases this can mean a service for the
www.host.name and the host.name.

The WASD global configuration directive

WASD_CONFIG_GLOBAL
[WWWimplied] enabled

(by default, and for backward-compatibility reasons, disabled) results in the server matching
a request specifying a leading www. matching a virtual service identical except for the www..
So for the configured service.

9–4 Service Configuration

[[http://the.host.name]]

a request to http://the.host.name/ (request header ‘‘Host: the.host.name’’) or to http://www.the.host.name/
(request header ‘‘Host: www.the.host.name’’) will be matched to it and allow conditionals, etc.,
to match to the one ‘‘the.host.name’’.

9.7 Service Directives
Where a service directive has an equivalent configuration directive (e.g. error report path) the
service directive takes precedence. This allows specific virtual services to selectively override
the generic configuration.

Service Directives

[[virtual-service]] scheme://host:port

[ServiceAdmin] an instance Server Administration page service

[ServiceBind] if different to host’s

[ServiceBodyTag] <BODY> tag for server reports., etc

[ServiceClientSSLcert] proxy SSL connect client certificate file

[ServiceClientSSLkey] proxy SSL connect client private key file

[ServiceClientSSLcipherList] proxy SSL connect ciphers

[ServiceClientSSLverifyCA] verify CA of proxied requests

[ServiceClientSSLverifyCAfile] location of proxy CA file

[ServiceClientSSLversion] proxy SSL version to use

[ServiceErrorReportPath] path to script, SSI or ‘‘flat’’ error document

[ServiceHttp2Protocol] per-service HTTP/2 disabled

[ServiceLogFormat] per-service access log format

[ServiceNoLog] suppress logging

[ServiceNonSSLRedirect] redirect non-SSL on SSL service

[ServiceProxy] proxy service

[ServiceProxyAffinity] make origin server ‘‘sticky’’

[ServiceProxyAuth] require proxy authorization

[ServiceProxyCache] proxy caching

[ServiceProxyChain] chained proxy service host

[ServiceProxyChainCred] up-stream proxy service access credentials

[ServiceProxySSL] provide proxy of SSL (connect:)

[ServiceProxyTunnel] enable tunneling of octets

Service Configuration 9–5

[ServiceRawSocket] enable ‘‘RawSocket’’ scripting

[ServiceShareSSH] share service with SSH

[ServiceSSLcert] SSL service certificate

[ServiceSSLcipherList] list of accepted SSL ciphers

[ServiceSSLkey] SSL service private key

[ServiceSSLoptions] SSL options

[ServiceSSLsessionLifetime] SSL session lifetime

[ServiceSSLstrictTransSec] HSTS maxiumum age in seconds

[ServiceSSLverifyPeer] access only using verified peer certificate

[ServiceSSLverifyPeerCAfile] location of CA file

[SSLverifyPeerDataMax] maximum kBytes of request data buffered during
renegotiation

[ServiceSSLverifyPeerDepth] depth of certificate chain

[ServiceSSLversion] SSL version to use

Configuration keywords equivalent to many of these WASD_CONFIG_SERVICE directives
but usable against the deprecated WASD_CONFIG_GLOBAL [Service] directive and the
/SERVICE qualifier are available for backward compatibility. See section Command Line
Parameters in source file [SRC.HTTPD]SERVICE.C for a list of these keywords.

9.8 Directive Detail
Some of these directives control the behaviour of proxy services. Other directive are Secure
Sockets Layer (SSL) specific.

1. [[virtual-service]] (default: none)

Specifies the scheme, host name (or asterisk) and port of a service.

2. [ServiceAdmin] ENABLED | DISABLED (default: DISABLED)

Marks the port as administration service (Section 9.4).

3. [ServiceBind] literal address (default: none)

If the system has a multi-homed network interface this binds the service to the specific
IP address and not to INADDR_ANY. Generally this will not be necessary. The literal
address may be in IPv4 dotted-decimal or IPv6 normal or compressed hexdecimal.

4. [ServiceBodyTag] string (default: <BODY>)

Specifies the HTML <BODY> tag for server error and other report pages. This allows
some measure of site ‘‘look-and-feel’’ in page colour, background, etc. to be maintained.

5. [ServiceClientSSL] ENABLED | DISABLED (default: DISABLED)

9–6 Service Configuration

Enables a proxy service to originate HTTP-over-SSL requests. This is different to the
CONNECT service enabled using [ServiceProxySSL]. It allows requests to be gatewayed
between standard HTTP and Secure Sockets Layer.

TLS/SSL Configuration
See ‘‘WASD Web Services - Features and Facilities’’ .

6. [ServiceClientSSLcert] string (default: none)

7. [ServiceClientSSLcipherList] string (default: none)

Location of client certificate file if required to authenticate client connection.

8. [ServiceClientSSLkey] string (default: none)

Location of client private key file if required to authenticate client connection.

A comma-separated list of SSL ciphers to be used by the gateway to connect to SSL
services. The use of this parameter might allow the selection of stronger ciphers to be
forced to be used or the connection not allowed to procede.

Note
These ServiceClientSSL.. directives are used to control behaviour when outgoing
SSL connections are established (as with HTTP-to-SSL gatewaying). This should
not be confused with verification of client certificates, which is better refered to
as peer verification. See [ServiceSSLverifyPeer] and [ServiceSSLverifyPeerCAfile]
directives.

9. [ServiceClientSSLverifyCA] ENABLED | DISABLED (default: DISABLED)

Unless this directive is enabled the Certificate Authority (CA) used to issue the service’s
certificate is not verified. Requires that a CA file be provided. See note in [Service-
ClientSSLcipherList] above.

10. [ServiceClientSSLCaFile] string (default: none)

Specifies the location of the collection of Certificate Authority (CA) certificates used
to verify the connected-to server’s certificate (VMS file specification). See note in
[ServiceClientSSLcipherList] above.

11. [ServiceClientSSLversion] string (default: SSLV2/V3)

The abbreviation for the SSL protocol version to be used to connect to the SSL service.
See note in [ServiceClientSSLcipherList] above.

12. [ServiceErrorReportPath] string (default: none)

Specifies the URL-format path to an optional, error reporting SSI document or script
(Section 4.10). This path can subsequently be remapped during request processing.

13. [ServiceHttp2Protocol] ENABLED | DISABLED (default: ENABLED)

When HTTP/2 is enabled globally this allows an HTTP/1.n-only service to be defined.

See ‘‘WASD Web Services - Features and Facilities’’ .

14. [ServiceLogFormat] string (default: none)

Per-service access log format. See Section 4.12.1.

Service Configuration 9–7

15. [ServiceNoLog] ENABLED | DISABLED (default: DISABLED)

When request logging is enabled then by default all services are logged. This directive
allows logging to be suppressed for this service.

16. [ServiceNonSSLRedirect] [CODE][HOST-NAME | IP-ADDRESS][:PORT] (default: none)

The default behaviour when a non-SSL HTTP request is begun on an SSL service is
to return a 400 error and short message. This directive instead redirects the client to
the specified non-SSL service. The parameter can be an optional scheme (i.e. http://
or https://), optional full host name or IP address with optional port, or only a colon-
delimited port number which will redirect using the current service name. A single colon
is the minimum parameter and redirects to port 80 on the current service name. The
default redirect code is 307 but this can be changed by providing a leading 301 or 302.

17. [ServiceProxy] ENABLED | DISABLED (default: DISABLED)

Enables and disables proxy request processing for this service.

18. [ServiceProxyAffinity] ENABLED | DISABLED (default: DISABLED)

Uses cookies to allow the proxy server to make every effort to relay successive requests
from a given client to the same origin host. This is also known as client to origin affinity
or proxy affinity capability.

19. [ServiceProxyAuth] NONE CHAIN | LOCAL | NONE | PROXY (default: none)

Makes a proxy service require authorization before a client is allowed access via it. CHAIN

allows an up-stream proxy server to request authorization. LOCAL enables standard
server authorization. NONE disables authorization (default). PROXY enables HTTP proxy
authorization. authentication.

20. [ServiceProxyCache] ENABLED | DISABLED (default: DISABLED)

Enables and disables proxy caching for a proxy service.

21. [ServiceProxyChain] string (default: none)

Specifies the next proxy host if chained.

22. [ServiceProxyChainCred] string (default: none)

Credentials for the up-stream proxy server (BASIC authentication only); in the format
username:password.

23. [ServiceProxyTunnel] CONNECT | FIREWALL | RAW (default: none)

Transfers octets through the proxy server. FIREWALL accepts a host and port specification
before connecting. CONNECT is the traditional CONNECT protocol. RAW connects to a
configured host an port.

24. [ServiceProxySSL] ENABLED | DISABLED (default: DISABLED)

Specifies the service as providing proxying of SSL requests. This is sometimes refered
as a ‘‘CONNECT’’ service. This proxies ‘‘https:’’ requests directly and is different to the
HTTP-to-SSL proxying enabled using [ServiceProxyHttpSSL].

25. [ServiceRawSocket] ENABLED | DISABLED (default: DISABLED)

9–8 Service Configuration

Enable ‘‘RawSocket’’ processing on the service. See the chapter on WebSocket scripting
in ‘‘WASD Web Services - Scripting’’

26. [ServiceShareSSH] integer (default: 0 (disabled))

Non-zero enables service sharing with an SSH server and sets the number of seconds for
input timeout.

See ‘‘WASD Web Services - Features and Facilities’’ .

27. [ServiceSSLcert] string (default: none)

Specifies the location of the SSL certificates (VMS file specification).

TLS/SSL Configuration
See ‘‘WASD Web Services - Features and Facilities’’ .
The [ServiceSSL..] directives override the server command line /SSL= parameter
equivalents.

28. [ServiceSSLcipherList] string (default: none)

A colon-separated list (OpenSSL syntax) of TLS/SSL ciphers allowed to be used by clients
to connect to SSL services. The use of this parameter might allow the selection of stronger
ciphers to be forced to be used or the connection not allowed to procede.

29. [ServiceSSLkey] string (default: none)

Specifies the location of the SSL private key (VMS file specification).

30. [ServiceSSLsessionLifetime] hh:mm:ss (no default)

The default maximum period for session reuse is five minutes. This is the per-service
equivalent of the global directive [SSLsessionLifetime].

31. [ServiceSSLstrictTransSec] hh:mm:ss (no default)

When non-zero represents the number of seconds, or maximum age, of a HSTS ‘‘Strict-
Transport-Security:’’ response header field. See ‘‘WASD Web Services - Features and
Facilities’’ . There is an equivalent global directive.

32. [ServiceSSLverifyPeer] ENABLED | DISABLED (default: DISABLED)

To access this service a client must provide a verified CA client certificate.

33. [ServiceSSLverifyPeerCAfile] string (default: none)

Specifies the location of the collection of Certificate Authority (CA) certificates used to
verify a peer certificate (VMS file specification).

34. [ServiceSSLverifyPeerDataMax] integer (default: 1024)

When a client certificate is requested for authentication via TLS/SSL renegotiation this is
the maximum kilobytes POST/PROPFIND/PUT data buffered during the renegotiation.
There is an equivalent global directive.

35. [SSLverifyPeerDepth] integer (default: 0)

Level through a certificate chain a client is verified to.

36. [ServiceSSLversion] string (default: TLS family of protocols)

Service Configuration 9–9

The abbreviation for the TLS/SSL protocol version allowed to be used to connect to an
SSL service. Using the directive a service may select prefered protocols.

9.9 Administration
A service configuration file can be maintained using a simple text editor and WASD_CONFIG_
SERVICE.

Alternatively the Server Administration facility may be used When using this interface for
the first time ensure the WASD_CONFIG_SERVICE logical is correctly defined. If the file
did not exist at server startup any services will have been created from the WASD_CONFIG_
GLOBAL [Service] directive. These will be displayed as the existing services and will be
saved to the configuration file the first time it is saved. Changes to the service configuration
file require a server restart to put them into effect.

The [IncludeFile] is a directive common to all WASD configuration, allowing a separate file
to be included as a part of the current configuration (Section 4.1).

Not all configuration directives may be shown depending on the type of service. For instance,
unless a service is configured to provide proxy, only the [ServiceProxy] directive is displayed.
To fully configure such a service enable it as proxy, save the file, then reload it. The additional
directives will now be available.

There is always one empty service displayed each time the configuration menu is generated.
This information may be changed appropriately and then saved to add new services to the
configuration (of course, these will not be available until the server is restarted). To configure
multiple new services add one at a time, saving each and reloading the file to provide a new
blank service.

9.10 Examples

1. The following example shows three services being configured. The first is standard HTTP
on the default (and well-known) port 80. The second is a proxy service on port 8080. This
service provides both standard HTTP (with response caching enabled), SSL (connect:)
access and proxy authorization required. The third service is SSL, with a host-specific
certificate and key.

[[http://alpha.example.com:80]]

[[http://alpha.example.com:8080]]
[ServiceProxy] enabled
[ServiceProxyAuth] PROXY
[ServiceProxyCache] enabled
[ServiceProxySSL] enabled

[[https://alpha.example.com:443]]
[ServiceSSLcert] WASD_ROOT:[local]alpha.pem

2. This example shows a generic service service being configured on the well-known port 80.

[[http://*:80]]

If a cluster of four systems, ALPHA, BETA, GAMMA and DELTA all use this configuration
each will have a service accessible via the following four URLs.

9–10 Service Configuration

http://alpha.example.com/
http://beta.example.com/
http://gamma.example.com/
http://delta.example.com/

3. The following example show two services configured against specific IP addresses. The
first is an IPv4 and the second a compressed IPv6.

[[http://alpha.example.com:80]]
[ServiceBind] 168.192.0.3

[[https://alpha6.example.com:80]]
[ServiceBind] fe80::200:f8ff:fe24:1a22

4. An administration port is a special configuration used to support the Server Administra-
tion facility when multiple per-node instances are configured See description above.

[[https://alpha.example.com:44443]]
[ServiceAdmin] enabled
[ServiceSSLcert] WASD_ROOT:[local]alpha.pem
[ServiceSSLkey] WASD_ROOT:[local]alpha.pem

Service Configuration 9–11

Chapter 10

Message Configuration

By default, the logical name WASD_CONFIG_MSG locates the global message configuration
file. A text editor may be used to modify this configuration file. Changes require a server
restart to put them into effect.

Message configuration is provided for two purposes.

1. Some sites would prefer to customize or extend the basic information provided to clients
when an error or other event occurs.

2. Sites that do not use English as a first language may wish to provide some or all of the
defined messages using a prefered language.

Not all messages provided by the WASD server are customizable, only those generated for
non-administrative content. As the WASD server can also report using information derived
from the standard VMS message service (via sys$getmsg()) it is assumed a language-local
implementation of this is in use as well. Unfortunately for the non-first-language-English
Web and system administrators, the menus and messages used for administration purposes,
etc., are still only in English. The intent of this facility is to provide non-administration
clients only with a more familiar language environment.

Also note that the message database only applies to messages generated by the server, not to
any generated by scripts, etc.

Changes to the message configuration file can be validated at the command-line before restart.
This detects and reports any syntactical and fatal configuration errors but of course cannot
check the intent of the rules.

$ HTTPD /DO=MSG=CHECK

Message Configuration 10–1

10.1 Behaviour
When an error, or other message or string, needs to be provided for the client the message
database is accesssed using the following algorithm.

1. If the client request has specified a list of prefered languages using the ‘‘Accept-Language:’’
HTTP header field the message database is checked for support of that/those languages.
If one is found then that language is used to access the message.

2. If none is found, or the client has not specified a prefered language, the client host address
is checked against any list of hosts/domains provided against the language (see below).
If a match occurs the specified language is used.

3. If neither of the above results in a message language the base language is used (the
highest numbered language). This must have a complete set of messages or the server
will not start!

10.2 Message File Format
By default, the system-table logical name WASD_CONFIG_MSG locates a common message
file, unless an individual message file is specified using a job-table logical name. Simple
editing of the message file changes the messages (after a server restart, of course). Comment
lines may be included by prefixing them with the hash character (‘‘#’’), and lines continued
by ensuring the last character is a backslash (‘‘\ ’’). The server will concurrently support an
additional 3 languages to the base English (although this can be increased by recompilation
:-)

Note

Care must be taken with the message file or the server may refuse to start!

Worst-case; the WASD_CONFIG_MSG.CONF message file may be copied from [EX-
AMPLE].

As illustrated below the message file comprises a series of sections. Directives enclosed by
square-brackets provide information to the message loader.

this is a comment

[version] 9.0
[language] 1 en

[general]

en 01 Sanity check failure.
en 02 String overflow.
en 03 Heap allocation failed.
en 04 calloc() failed
en 05 Request calloc() failed.
en 06 Server too busy.
en 07 Server access denied.
en 08 Facility is disabled.
en 09 Wildcard not permitted.
en 10 Directory layout problem.

[next-section, etc.]

The square-bracketed section headings have the following functions.

10–2 Message Configuration

• [version] - Ensures the correct database version is available for the server version
attempting to use it. The message file always needs checking for this version number
being changed at server updates, although the version may remain fixed at a previous
server version number if there have been no changes to the message database during
subsequent server versions. This must be the first directive in the file.

• [language] - Creates space for assigning the new language’s messages. The number
specifies an order within the languages, each must be different, but only the lowest
and highest (prefered and base respectively) have operational significance. The highest
number should always be English to provide a fall-back message. A short string provides
an identifier for the language. This identifier should be the same as the identifying string
in the browser request ‘‘Accept-Language:’’ header field (e.g. ‘‘en’’, ‘‘se’’, ‘‘de’’, ‘‘fr’’, etc.)
Multiple, comma-separated languages may be specified. The first is the primary language
of that list and messages must be specified using that. The subsequent languages are
equivalents that might be specified by the client. A wildcard may be used to match all
possibilities (e.g. ‘‘de,de-*’’, ‘‘es,es-*’’). Following the language identifier is an optional
host/domain list. Multiple hosts/domains may be specified by separating each with a
comma. The specifications may contain wildcards. All the [language] directives should be
grouped at the start of the file immediately following the [version] directive. A character
set may be associated with a particular language by specifying a charset= following the
language string (e.g. ‘‘ru charset=koi8-r’’). Setting the language’s ordering number to zero
disables the language completely. All messages associated with it will then be ignored.

• [group-name] - The messages are divided into groupings to make them easier to manage.
Each group begins with the group name directive.

• en 01 message - Each message in a group is assigned using using this format. The string
identifying the language, then the message number (the leading zero just improves the
format, strictly it is not required), then the actual message itself. The message can be
of arbitrary length. Long messages may be continued on following lines using the ‘‘\ ’’
continuation character.

The base language (the highest numbered, which should always be English) must have
precisely the right number of messages required by the server, too few or too many and
the server will not start! Additional languages do not have to reassign every message!

The base language will supply any not assigned. A message number of zero is disabled and
completely ignored.

If messages contain HTML tags that markup must not interfere with the general HTML page
it is used within.

Some messages are a composite of multiple strings each of which is used on a different part
of the one page (e.g. for the [upd] edit-page). Each of the strings is delimited by the vertical
bar ‘‘ | ’’. Care must be taken when customizing these strings that the overall number stays
the same and that the length of each does not become excessive. Although it will not disrupt
the server it may significantly disrupt the page layout.

All message numbers must be included. To provide an empty string for any one message (not
recommended) provide the line with nothing following the message number.

Message Configuration 10–3

10.3 Multiple Language Specifications
Multiple language messages can be specified in two ways:

• within the one file

• in multiple files specified by a multivalued logical name

Within The One File

Language availability is specified through the use of [Language] directives. These must be
numbered from 1 to the count of those supplied. The highest numbered language must have
the complete set of messages for this is the fallback when obtaining any message (this would
normally be ‘‘en’’). The [Language] may be specified as a comma-separated list of equivalent
or similar specifications, which during request processing will be matched against a client
specified list of accepted-languages one at a time in specified order. A wildcard may be
specified which matches all fitting the template. In this manner a single language can be
used also to match minor variants or language specification synonyms.

[Version] 9.0
[Language] 1 es,es-ES
[Language] 2 de,de-*
[Language] 3 en

[auth]
es 01 Habla Espanol
de 01 Sprechen Sie Deutsches
en 01 Do you speak English
.
.
.(full set of messages)

In the above (rather contrived) example a client request with

Accept-Language: es-ES,de;q=0.6,en;q=0.3

would have language 1 selected, a client with

Accept-Language: de-ch,es;q=0.6,en;q=0.3

language 2 selected, with

Accept-Language: pt-br,de;q=0.6,en;q=0.3

also language 2 selected, with

Accept-Language: pt

language 3 (the default) selected, etc.

Note that the messages for each language must use the *first* language specification provided
in the [Language] list. In the example above all messages for language 1 would be introduced
using ’es’, for language 2 with ’de’ and for language 3 with ’en’.

10–4 Message Configuration

Multiple Files - Multivalued Logical Name

With this approach a logical name containing multiple file names is defined (more commonly
described as a logical search list). The final file specified must contain the full message set.
Files specified prior to this, can contain as many or as few of the full set as is desired. A
[Language] number does not need to be specified as they are processed in the order the logical
name specifies them in. Other language file directives are required.

The following is an example of a logical name providing the same three languages in the
examples above.

$ DEFINE /SYSTEM WASD_CONFIG_MSG WASD_ROOT:[LOCAL]WASD_CONFIG_MSG_ES.CONF, -
WASD_ROOT:[LOCAL]WASD_CONFIG_MSG_DE.CONF, -
WASD_ROOT:[LOCAL]WASD_CONFIG_MSG.CONF

The file contents would be as follows (very contrived examples :-)

WASD_CONFIG_MSG_ES.CONF
[Version] 9.0
[Language] 0 es,es-ES
[auth]
es 01 Habla Espanol
es 02 Habla Inglesi
[dir]
es 03 Habla Espanol
es 04 Habla Inglesi

WASD_CONFIG_MSG_DE.CONF
[Version] 9.0
[Language] 0 de,de-*
[auth]
de 01 Sprechen Sie Deutsches
de 02 Sprechen Sie Englisch
[dir]
de 03 Sprechen Sie Deutsches
de 04 Sprechen Sie Englisch

WASD_CONFIG_MSG.CONF
[Version] 9.0
[Language] 0 en
[auth]
.
.
.(full set of messages)

The major advantage of maintaining multiple files in this way is there is no need to

merge files when a new revision is required. Just update the version number and add any
new required messages to the existing secondary file.

10.4 Supplied Message Files
Any non-English message files that are provided to the author will be included for general use
(please take the time to support this endeavour) in the WASD_ROOT:[EXAMPLE] directory.

online Web link

Message Configuration 10–5

Note that message files can become out-of-date as server versions change, requiring modifica-
tions to the message database. Check the version information and/or comments at the top of
candidate message files, however even slightly dated files may serve as a good starting point
for a locale-specific message base.

10–6 Message Configuration

Chapter 11

Cache Configuration

WASD HTTPd provides an optional, configurable, monitorable file data and revision time
cache. File data, so that requests for documents can be fulfilled without reference to the
underlying file system, potentially reducing request latency and more importantly improving
overall server performance and system impact, and file revision time, so that requests
specifying an ‘‘If-Modified-Since:’’ header can also benefit from the above. Files are cached
using a hash derived from the VMS file-system path equivalent generated during the mapping
process (i.e. represents the file name) but before any actual RMS activity. WASD can also
cache the content of responses from non-file sources. This can be useful for reducing the
system impact of frequently accessed, dynamically generated, but otherwise relatively static
pages. These sources are cached using a hash derived from virtual service connected to and
the request URI.

Why Implement Caching?

Caching, in concept, attempts to improve performance by keeping data in storage that is
faster to access than the usual location. The performance improvement can be assessed in
three basic ways; reduction of

• response when accessing the data (latency and transfer time)

• processing involved (CPU cycles)

• impact on the usual storage location (file system I/O)

This cache is provided to address all three. Where networks are particularly responsive a
reduction in request latency can often be noticeable. It is also suggested a cache ‘‘hit’’ may
consume less CPU cycles than the equivalent access to the (notoriously expensive) VMS file
system. Where servers are particularly busy or where disk subsystems particularly loaded a
reduction in the need to access the file system can significantly improve performance while
simultaneously reducing the impact of the server on other system activities.

A comparison between cached and non-cached performance is provided in in the ‘‘Server
Performance’’ section.

Cache Configuration 11–1

Terminology

Term Description

hit Refers to a request path being found in cache. If the data is still valid the
request can be supplied from cache.

flushing Occurs when the cache becomes full, with older, less frequently used cache
entries being removed from the cache and replaced by other files.

loading Refers to reading the contents of a file into cache memory.

permanent These entries are loaded once and remain in the cache until it is explicitly
purged by the administrator or the the server is restarted. They are not
flushed or revalidated.

revalidate Compare the cache entrys size and modification date-time to the file it
represents in the file-system. Obviously a difference indicates the content
has changed.

valid The file from which the cached data was originally read has not had its revision
date changed (the implication being the file contents have not changed).

volatile Entries have the original file periodically checked for modification and are
reloaded if necessary. They can also be flushed if demand for space requires it.

11.1 Non-File Content Caching
The WASD cache was originally provided to reduce file-system access (a somewhat expensive
activity under VMS). With the expansion in the use of dynamically generated page content
(e.g. PHP, Perl, Python) there is an obvious need to reduce the system impact of some of
these activities. While many such responses have content specific to the individual request a
large number are also generated as general site pages, perhaps with simple time or date
components, or other periodic information. Non-file caching is intended for this type of
dynamic content.

Revalidation of non-file content is fraught with a number of issues and so is not provided.
Instead the cache entry is flushed on expiry of the [CacheValidateSeconds], or as otherwise
specified by path mapping, and the request is serviced by the content source (script, PHP, Perl,
etc.) with the generated response being freshly cached. All of the considerations described in
Section 11.4 apply equally to file and non-file content.

Controlling Non-File Content Caching

Determining which non-file content is cached and which not, and how long before flushing,
is done using mapping rules (Section 12.5.5). The source of non-file cache content is specified
using one or a combination of the following SET rules against general or specific paths.

cache=[no]cgi from Common Gateway Interface (CGI) script response
cache=[no]file from the file system (default and pre-8.4 cache behaviour)
cache=[no]net caches the full data stream irrespective of the source
cache=[no]nph full stream from Non-Parse Header (NPH) script response
cache=[no]query cache requests with query strings (use with care)

11–2 Cache Configuration

cache=[no]script both CGI and NPH script responses
cache=[no]ssi from Server-Side Includes (SSI) documents

A good understanding of site requirements and dynamic content sources, along with consid-
erable care in specifying cache path SETings, is required to cache dynamic content effectively.
It is especially important to get the content revalidation period appropriate to the content of
the pages. This is specified using the following path SETings.

cache=expires=0 cancels any expiry
cache=expires=DAY expires when the day changes
cache=expires=HOUR when the clock hour changes
cache=expires=MINUTE when the clock minute changes
cache=expires=<hh:mm:ss> expires after the specified period in the cache

For example. To cache the content of PHP-generated home pages that contain a time-of-day
clock, resolving down to the minute, would require a mapping rule similar to the following.

set /**/index.php cache=cgi cache=expires=minute

11.2 Permanent and Volatile
The WASD file cache provides for some resources to be permanently cached while others are
allowed to be moved into and out of the cache according to demand. Most sites have at least
some files that are fundamental components of the site’s pages, are rarely modified, commonly
accessed, and therefore should be permanently available from cache. Other files are modified
on a regular or ad hoc basis and may experience fluctuations in demand. These more volatile
resources should be cached based on current demand.

Volatile caching is the default with the site administrator using mapping rules to indicate to
the server which resources on which paths should be permanently cached (Section 11.5).

Although permanent and volatile entries share the same cache structure and are therefore
subject to the configuration’s maximum number of cache entries, the memory used store the
cached file data is derived from separate pools. The total size of all volatile entries data is
constrained by configuration. In contrast there is no configuration limit placed on the quantity
of data that can be cached by permanent entries. One of the purposes of the permanent aspect
of the cache is to allow the site administrator considerable discretion in the configuration of
the site’s low-latency resources, no matter how large or small that might be. Of course there
is the ultimate constraint of server process and system virtual memory limits on this activity.
It should also be kept in mind that unless sufficient physical memory is available to keep
such cached content in-memory the site may only end up trading file-system I/O for page file
I/O.

11.3 Cache Suitability Considerations
A cache is not always of benefit! the cost may outweigh the return.

Any cache’s efficiencies can only occur where subsets of data are consistently being demanded.
Although these subsets may change slowly over time a consistent and rapidly changing
aggregate of requests lose the benefit of more readily accessible data to the overhead of
cache management, due to the constant and continuous flushing and reloading of cache data.
This server’s cache is no different, it will only improve performance if the site experiences
some consistency in the files requested. For sites that have only a small percentage of files

Cache Configuration 11–3

being repeatedly requested it is probably better that the cache be disabled. The other major
consideration is available system memory. On a system where memory demand is high there
is little value in having cache memory sitting in page space, trading disk I/O and latency for
paging I/O and latency. On memory-challenged systems cache is probably best disabled.

To help assessment of the cache’s efficiency for any given site monitor the Server Adminis-
tration facility’s cache report.

Two sets of data provide complementary information, cache activity and file request profile.

• Activity Data

This summarizes the cache search behaviour, in particular that of the hash table.

The ‘‘searched’’ item, indicates the number of times the cache has been searched. Most
importantly, this may include paths that can never be cached because they represent non-
file requests (e.g. directory listings). Requests involving scripts, and some others, never
attempt a cache search.

The ‘‘hit’’ item, indicates the number of times the hash table directly provided a cached
path. This is very efficient.

The ‘‘miss’’ item, indicates the number of times the hash table directly indicated a path
was not cached. This is decisive and is also very efficient.

The ‘‘collision’’ item, indicates the number of times multiple paths resolved to the same
hash table entry. Collisions require further processing and are far less efficient. The
sub-items, ‘‘collision hits’’ and ‘‘collision misses’’ indicate the number of times that further
processing resulted in a found or not-found cache item.

A large number of cache misses compared to searches may only indicate a large number
of non-cacheable requests and so depending on that further datum is not of great concern.
A large proportion of collisions (say greater than 12.5%) is however, indicating either the
hash table size needs increasing (1024 should be considered a minimum) or the hashing
algorithm in the software need reviewing :-)

• Files Data

This summarizes the site’s file request profile.

With the ‘‘loads not hit’’ item, the count represents the cumulative number of files loaded
but never subsequently hit. If this percentage is high it means most files loaded are never
hit, indicating the site’s request profile is possibly unsuitable for caching.

The item ‘‘hits’’ respresents the cumulative, total number of hits against the cumulative,
total number of loads. The percentage here can range from zero to many thousands of
percent :-) with less than 100% indicating poor cache performance and from 200% upwards
better and good performance. The items ‘‘1-9’’, ‘‘10-99’’ and ‘‘100+’’ show the count and
percentage of total hits that occured when a given entry had experienced hits within
that range (e.g. if an entry has had 8 previous hits, the ninth increments the ‘‘1-9’’ item
whereas the tenth and eleventh increments the ‘‘10-99’’ item, etc.)

11–4 Cache Configuration

Other considerations also apply when assessing the benefit of having a cache. For
example, a high number and percentage of hits can be generated while the percentage of
‘‘loads not hit’’ could be in the also be very high. The explanation for this would be one
or two frequently requested files being hit while most others are loaded, never hit, and
flushed as other files request cache space. In situations such as this it is difficult to judge
whether cache processing is improving performance or just adding overhead.

11.4 Cache Content Validation
The cache will automatically revalidate the volatile entry file data after a specified number
of seconds ([CacheValidateSeconds] configuration parameter), by comparing the original file
revision time to the current revision time. If different the file contents have changed and
the cache contents declared invalid. If found invalid the file transfer then continues outside
of the cache with the new contents being concurrently reloaded into the cache. Permanent
entries are not subject to revalidation and the associated reloading.

Cache validation is also always performed if the request uses ‘‘Cache-Control:’’ with no-
cache, no-store or max-age=0 attributes (HTTP/1.1 directive), or if a ‘‘Pragma: no-cache’’ field
(HTTP/1.0 directive). These request directives are often associated with a browser agent
reload page function. Hence there is no need for any explicit flushing of the cache under
normal operation. If a document does not immediately reflect any changes made to it (i.e.
validation time has not been reached) validation (and consequent reload) can be ‘‘forced’’ with
a browser reload. Permanent entries are also not subject to this source of revalidation. The
configuration directive [CacheGuardPeriod] limits this form of revalidation when used within
the specified period since last revalidated. It has a default value of fifteen seconds.

If a site’s contents are relatively static the validation seconds could be set to an extended
period (say 3600 seconds, one hour) and then rely on an explicit ‘‘reload’’ to force validation
of a changed file.

The entire cache may be purged of cached data, both volatile and permanent entries, either
from the Server Administration facility or using command line server control.

$ HTTPD /DO=CACHE=PURGE

11.5 Cache Configuration
The cache is controlled using WASD_CONFIG_GLOBAL configuration file and WASD_
CONFIG_MAP mapping file directives. A number of parameters control the basics of cache
behaviour.

• [Cache] enables and disables caching.

• [CacheEntriesMax] and [CacheTotalKBytesMax] provide growth limits to cache
expansion. Maximum entries limits the number of files loaded into the cache before
entries begin to be reused (flushing the original contents). Maximum total kilobytes
allocated to the cache provides a ceiling on the memory consumed. These parameters
operate to limit each other (i.e. if one reaches its limit before the other, the other will not
grow further either).

Cache Configuration 11–5

• [CacheFileKBytesMax] provides a limit on file size (in kilobytes). Files larger than
the specified limit will not be cached. This may be overridden on a per-path basis using
the set cache=max=<integer> mapping rule (see below).

• [CacheFrequentHits] and [CacheFrequentSeconds] attempt to reduce unproductive
reuse of cache entries by providing the cache with some indication of what constitutes
a frequently hit entry. If it is frequently hit then it should not be immediately reused
when there is a demand for cache space. The first parameter sets the number of hits an
entry must sustain before being a candidate for CacheFrequentSeconds assessment. If a
file has been hit at least CacheFrequentHits times in total and the last hit was within the
number of seconds set by CacheFrequentSeconds it will not be flushed and reused. If it
has not been hit within the specified period it will be reused.

• [CacheGuardPeriod] prevents browser initiated content revalidation described above
(Section 11.4). It is provided to help limit unnecessary file-system activity. The default is
fifteen seconds.

• [CacheEntriesMax] (obsolete)

• [CacheValidateSeconds] The interval after which a cache entry’s original, content
revision time is revalidated against the file’s current revision time. If not the same the
contents are declared invalid and reloaded. Setting this to a greater period reduces disk
I/O but revised files may not be obvious within an acceptable timer unless a revalidation
is forced with a reload. Permanent entries are not subject to validation.

Mapping Rules

Mapping rules (Section 12.5.5) allow further tailoring of cache behaviour based on request
(file) path. Those files that should be made permanent entries are indicated using the
cache=perm directive. In the following example all files in the WASD runtime directories
(directory icons, help files, etc.) are made permanent cache entries at the same time the path
is mapped.

pass /*/-/* /wasd_root/runtime/*/* cache=perm

Of course, specified file types as well as specific paths can be mapped in this way. Here
all files in the site’s /help/ path are made permanent entries except those having a .PS type
(PostScript documents).

set /help/* cache=perm
set /help/*.ps cache=noperm

The configuration directive [CacheFileKBytesMax] puts a limit on individual file size. Those
exceeding that limit are considered too large and not cached. It is possible to override this
general constraint by specifying a maximum size (in kilobytes) on a per-path basis.

set /help/examples*.jpg cache=max=128
set /cai/*.mpg cache=max=2048 cache=perm

Caching may be disabled and/or enabled for specified paths and subpaths.

set /web/* cache=none
set /web/icons/* cache

11–6 Cache Configuration

11.6 Cache Control
The cache may be enabled, disabled and purged from the Server Administration facility. In
addition the same control may be exercised from the command-line using

$ HTTPD /DO=CACHE=ON
$ HTTPD /DO=CACHE=OFF
$ HTTPD /DO=CACHE=PURGE

If cache parameters are altered in the configuration file the server must be restarted to put
these into effect. Disabling the cache on an ad hoc basis (from menu or command line) does
not alter the contents in any way so it can merely be reenabled with use of the cache’s previous
contents resuming. In this way comparisions between the two environments may more easily
be made.

11.7 Circumventing The Cache
There are often good reasons for bypassing or avoiding the cache. For instance, where a docu-
ment is being refreshed within the cache revalidation period specified by [CacheValidateSec-
onds] (Section 11.4). There are two mechanisms available for bypassing or invalidating the
file cache.

1. This directs the server to always get the file from the file-system.

SET /path/not/to/cache/* cache=none

2. Specify a version component when requesting the file. WASD never caches a file if the
request contains a version component. It does not need to be a full version number, a
semi-colon is sufficient. For example:

/wasd_root/robots.txt;

Cache Configuration 11–7

Chapter 12

Request Processing Configuration

By default, the logical name WASD_CONFIG_MAP locates a common mapping rule file.
Simple editing of the mapping file and reloading into the running server changes the
processing rules. The [IncludeFile] is a directive common to all WASD configuration, allowing
a separate file to be included as a part of the current configuration (Section 4.1).

Mapping rules are used for a number of different request processing purposes.

1. To map a request path onto the VMS file system. That is, to map from web-space into
file-space.

2. To map from file-space back into web-space. There is often not a one-to-one correspon-
dance between file specifcations and web paths.

3. To process a request path according to specified criteria resulting in an effective path that
is different to that supplied with the request.

4. To identify requests requiring script activation and to parse the script from the path
portion of that request. The path portion is then independently re-mapped.

5. To conditionally map to different end-results based on one or more criteria of the request
or environment.

6. To provide differing virtual sites depending on the actual service accessed by the client.

Mapping is basically for server-internal purposes only. The only time the path information
of the request itself is modified is when a script component is removed. At all other times
the path information remains unchanged. Path authorization is always applied to the path
supplied with the request.

Rules are given a basic consistency check when loaded (i.e. server startup, map reload, etc.)
If there is an obvious problem (unknown rule, missing component, etc., path not absolute)
a warning message is generated and the rule is not loaded into the database. This will not
cause the server startup to fail. These warning messages may be found in the server process
log.

Request Processing Configuration 12–1

Changes to the mapping configuration file can be validated at the command-line before reload
or restart. This detects and reports any syntactical and fatal configuration errors but of course
cannot check the intent of the rules.

$ HTTPD /DO=MAP=CHECK

A server’s currently loaded mapping rules may also be interrogated from the Server Admin-
istration menu (see ‘‘WASD Web Services - Features and Facilities’’).

12.1 Rule Interpretation
The rules are scanned from first towards last, until a matching final rule is encountered
(PASS, EXEC, SCRIPT, FAIL, REDIRECT, UXEC and USER) when the mapping pass
concludes. Non-final rules (MAP and SET) perform the appropriate action and continue to
the next rule. One, two or more passes through the rules may occur due to implicit processing
(if the path contains a script component) or by explicit restart (SET map=restart).

String Matching

The basis of path mapping is string pattern matching, comparing the request specified
path, and optionally other components of the request when using configuration conditionals
(Chapter 7), to a series of patterns, usually until one of the patterns matches, at which stage
some processing is performed. Both wildcard and regular expression based pattern matching
is available. All rules have a template (string pattern to match against the path). Some rules
have a result (how to restructure the components matching from the template).

• The template may contain one or more asterisk (‘‘*’’) wildcard symbols, or a regular
expression with optional grouping operators. This is pattern matched against the request
path (Chapter 6). If neither is present then the path must match the template exactly.

• The result may contain one or more asterisk (‘‘*’’) substitution symbols. The result
wildcards are expanded to replace the matching strings of the respective template
wildcards or pattern groups. Specified wildcard substitution is available (Section 6.4).
Characters represented by wildcards in the template not represented by a corresponding
wildcard in the result are ignored. Non-wildcard result characters are directly inserted
in reconstructed path. Non-wildcard characters in the template are ignored. If the result
contains no wildcards it completely replaces the URL path.

Virtual Servers

As described in Section 4.3 virtual service syntax may be used with mapping rules to selec-
tively apply rules to one specific service. If virtual services are configured rule interpretation
sees only rules common to all services and those specific to its own service (host address and
port). In all other aspects rule interpretation applies as described above.

12–2 Request Processing Configuration

Processing Overhead

Naturally, each rule that needs to be processed adds a little to consumed CPU, introduces some
latency, and ultimately reduces throughput. The test-bench has shown this to be acceptably
small compared to the overall costs of responding to a request. Using the ApacheBench tool
on a COMPAQ Professional Workstation XP1000 with 2048MB, VMS V8.3, TCP/IP Service
5.7 and WASD v10.1, with a simple access to /wasd_root/exercise/0k.txt showed approximately
744 requests/second throughput using the following mapping file.

pass /wasd_root/exercise/*

After adding various quantities of the same intervening rule

pass /wasd_root/example/*
pass /wasd_root/example/*
.
.
.

pass /wasd_root/example/*
pass /wasd_root/exercise/*

the following results were derived.

Mapping Overhead

Intervening Rules Requests/S Throughput

0 744 baseline

100 701 -5.8%

200 665 -10.6%

500 571 -23.3%

1000 461 -38.4%

Although this is a fairly contrived set-up and actual real-world rule-sets are more complex
than this, even one hundred rules is a very large set, and it does indicate that for all intents
and purposes mapping rules may be used to achieve desired objectives without undue concern
about impact on server throughput.

12.2 VMS File System Specifications
The VMS file system in mapping rules is always assumed to begin with a device or
concealed device logical. Specifying a Master File Directory (MFD) component, the [000000]
is completely optional, although always implied. The mapping functions will always insert
one if required for correct file system syntax. That is, if the VMS file system mapping of a
path results in a file in a top-level directory an MFD is inserted if not explicitly present in
the mapping. For example, both of the following paths

/dka100/example.txt
/dka100/000000/example.txt

would result in a mapping to

Request Processing Configuration 12–3

DKA100:[000000]EXAMPLE.TXT

The MFD is completely optional when both specifying paths in mapping rules and when
supplying paths in a request. Similarly, when supplying a path that includes directory
components, as in

/dka100/dir1/dir2/example.txt
/dka100/000000/dir1/dir2/example.txt

both mapping to

DKA100:[DIR1.DIR2]EXAMPLE.TXT

LOGICAL NAMES
When using logical names in file system mappings they must be able to be used as
concealed devices and cannot be logical equivalents of directory specifications. You
must be able to perform a

$ DIRECTORY logical-name:[000000]
to be able to use the specification as a WASD mapping rule.

Concealed device logicals are created using the following syntax:

$ DEFINE LOGICAL_NAME device:[dir1.dir2.]
$ DEFINE LOGICAL_NAME /TRANSLATION=CONCEALED physical_device:[dir1.dir2.]
$ DEFINE LOGICAL_NAME /TRANSLATION=CONCEALED -
physical_device1:,physical_device2:
$ DEFINE LOGICAL_NAME /TRANSLATION=CONCEALED -
physical_device3:[dir1.dir2.],physical_device4:[dir1.dir3.]

The logical name may be multi-valued and provided the DIRECTORY command can be used
successfully with them (as described above) should be amenable to WASD directory listing
producing equivalent results.

12.3 Traditional File Specifications (ODS-2)
For ODS-2 volumes, when during rule mapping of a path to a VMS file specification an RMS-
invalid character (e.g. ‘‘+’’) or syntax (e.g. multiple periods) is encountered a dollar symbol
is substituted in an attempt to make it acceptable. This functionality is often useful for
document collections imported to the local web originating from, for instance, a Unix site
that utilizes non-VMS file system syntax. The default substitution character may be changed
on a per-path basis using the SET rule (Section 12.5.5).

12.4 Extended File Specifications (ODS-5)
OpenVMS Alpha V7.2 introduced a new on-disk file system structure, ODS-5. This brings to
VMS in general, and WASD and other Web servers in particular, a number of issues regarding
the handling of characters previously not encountered during (ODS-2) file system activities.
ODS-2 and ODS-5 volumes should be automatically distinguished by the server however it is
possible to force interpretation using a path mapping rule (Section 12.5.5).

12–4 Request Processing Configuration

12.4.1 Characters In Request Paths

There is a standard for characters used in HTTP requests paths and query strings (URLs).
This includes conventions for the handling of reserved characters, for example ‘‘?’’, ‘‘+’’, ‘‘&’’,
‘‘=’’ that have specific meanings in a request, characters that are completely forbidden, for
example white-space, control characters (0x00 to 0x1f), and others that have usages by
convention, for example the ‘‘~’’, commonly used to indicate a username mapping. The request
can otherwise contain these characters provided they are URL-encoded (i.e. a percentage
symbol followed by two hexadecimal digits representing the hexadecimal-encoded character
value).

There is also an RMS standard for handling characters in extended file specifications, some of
which are forbidden in the ODS-2 file naming conventions, and others which have a reserved
meaning to either the command-line interpreter (e.g. the space) or the file system structure
(e.g. the ‘‘:’’, ‘‘[’’, ‘‘]’’ and ‘‘.’’). Generally the allowed but reserved characters can be used
in ODS-5 file names if escaped using the ‘‘^’’ character. For example, the ODS-2 file name
‘‘THIS_AND_THAT.TXT’’ could be named ‘‘This^_^&^_That.txt’’ on an ODS-5 volume. More
complex rules control the use of character combinations with significance to RMS, for instance
multiple periods. The following file name is allowed on an ODS-5 volume, ‘‘A-GNU-zipped-
TAR-archive^.tar.gz’’, where the non-significant period has been escaped making it acceptable
to RMS.

Of course characters absolutely forbidden in request paths must still be URL-encoded,
the most obvious example is the space. RMS will accept the file name ‘‘This^ and^
that.txt’’ (i.e. containing escaped spaces) but the request path would need to be specified
as ‘‘This%20and%20that.txt’’.

Unlike for ODS-2 volumes, ODS-5 volumes do not have ‘‘invalid’’ characters, so no processing
is performed to ensure RMS compliance.

12.4.2 File Name Ambiguity

ODS-5 allows for some file name ambiguity in web-space.

For example the file name

This^_is^_an^_EXAMPLE^.txt.;1

would be presented to the client as

This is an EXAMPLE.txt

which when provided in a URL as

This%20is%20an%20EXAMPLE.txt

and translated from that URL into the file specification

This^_is^_an^_EXAMPLE.txt;1

of course will not be able to be accessed.

Request Processing Configuration 12–5

In addition, the two files

This^_is^_an^_EXAMPLE.txt;1
This^_is^_an^_EXAMPLE^.txt.;1

are distinct in the file-system, independently parsed from the directory structure, presented
by a web directory listing (and WebDAV resource property list) as consecutive entries having
the same name, with only the accessible file name actually available.

This is an EXAMPLE.txt
This is an EXAMPLE.txt

To avoid this situation a potentially ambiguous file name containing an escaped period and
no type (extension) is ignored by directory listings and WebDAV property lists. When an
ambiguous file name is detected it is reported in WATCH reports.

While these sorts of situations are corner-cases it is best to try and avoid interesting file
names that can challenge the rather convoluted VMS file-system environment.

12.4.3 Characters In Server-Generated Paths

When the server generates a path to be returned to the browser, either in a viewable page
such as a directory listing or error message, or as a part of the HTTP transaction such as
a redirection, the path will contain the URL-encoded equivalent of the canonical form of
an extended file specification escaped character. For example, the file name ‘‘This^_and^_
that.txt’’ will be represented by ‘‘This%20and%20that.txt’’.

When presenting a file name in a viewable page the general rule is to also provide this URL-
equivalent of the unescaped file name, with a small number of exceptions. The first is a
directory listing where VMS format has been requested by including a version component
in the request file specification. The second is in similar fashion, but with the tree facility,
displaying a directory tree. The third is in the navigation page of the UPDate menu. In all
of the instances the canonical form of the extended file specification is presented (although
any actual reference to the file is URL-encoded as described above).

12.5 Rules
These are the categories of mapping rules.

• Map paths to the file system, and to other paths:

MAP
PASS
FAIL
REDIRECT
USER

• Provide access to scripting:

EXEC
SCRIPT
UXEC

• Sets characteristics against particular paths:

SET

12–6 Request Processing Configuration

12.5.1 MAP, PASS, FAIL Rules

1. map template result

If the URL path matches the template, substitute the result string for the path and use
that for further rule processing. Both template and result paths must be absolute (i.e.
begin with ‘‘/’’).

2. pass template

pass template result

pass template ‘‘999 message text’’

If the URL path matches the template, substitute the result if present (if not just use the
original URL path), processing no further rules.

The result should be a either a physical VMS file system specification in URL format or
an HTTP status-code message (see below). If there is a direct correspondance between
the template and result the result may be omitted.

Note
The PASS directive is also used to reverse-map VMS file specifications to the URL
path format equivalent. See Section 12.6.

An HTTP status-code message can be provided as a result. The server then generates
a response corresponding to that status code containing the supplied message. Status-
code results should be enclosed in one of single or double quotes, or curly braces. See
examples. A 3nn status results in a redirection response with the message text comprising
the location. Codes 4nn and 5nn result in an error message. Other code ranges (e.g. 0,
1nn, 2nn, etc.) simply cause the connection to be immediately dropped, and can be used
for that purpose (i.e. no indication of why!)

3. fail template

If the URL path matches the template, prohibit access, processing no further rules. The
template path must be absolute (i.e. begin with ‘‘/’’).

12.5.2 REDIRECT Rule

1. redirect template result

If the URL path matches the template, substitute the result string for the path. Process
no further rules. Redirection rules can provide result URLs in one of a number of formats,
each with a slightly different behaviour.

1. The result can be a full URL (‘‘http://host.domain/path/to/whatever’’). This is used to
redirect requests to a specific service, usually on a another host. A result may or may
not contain a fixed query string (‘‘/path/to/whatever?one=two’’).

2. If the scheme (e.g. ‘‘http:’’) is omitted the scheme of the current request is substituted.
This allows HTTP requests to be transparently redirected via HTTP and HTTPS (SSL)
requests via HTTPS (e.g. ‘‘//host.domain/path/to/whatever’’, note the leading double-
slash).

Request Processing Configuration 12–7

3. In a similar fashion both the scheme and the host name may be omitted (e.g.
‘‘///path/to/whatever’’, note the leading triple-slash). The server then substitutes the
appropriate request scheme and host name before returning the redirection to the
client.

4. If the scheme is provided but no host component the current request’s host information
is substituted and the redirection made using that (e.g. ‘‘https:///secure/path/to/whatever’’.
This effectively allows a request to be redirected from standard to SSL, or from SSL
to standard HTTP on the same server.

5. Alternatively, it may be just a path (‘‘/path/to/whatever’’, a single leading slash), which
will cause the server to internally generate an entire new request structure to process
the new path (i.e. request redirection is not returned to the client).

Note
Internal redirection (as this is termed) is a fundamental mechanism available
with WASD to completely change the request path and/or query string compo-
nents for the request - transparently to the client. It is essentially a complete
rewrite of the request.

6. Full request URI rewriting (path and any query string) is available using the map=uri
path SETing (Section 12.5.5).

7. Only if the last character in the result is a question mark (‘‘?’’) will any query string
in the original be propagated into the redirection URL (that is the original request
‘‘/original/test.txt?plus=query’’ is mapped using ‘‘redirect /original/* /path/to/*?’’ does
the resulting URL become ‘‘/path/to/test.txt?plus=query’’).

12.5.3 USER Rule

The USER rule maps a VMS user account default device and directory (i.e. home directory)
into a request path. That is, the base location for the request is obtained from the VMS
systems SYSUAF file. This is usually invoked by a request path in the form ‘‘/~username/’’,
see Section 12.10 for more detailed information.

1. user template result

If the path matches the template then the result is substituted, with the following
conditions. At least one wildcard must be present. The first wildcard in the result
substitutes the username’s home directory into the path (in place of the ‘‘~username’’).
Any subsequent wildcard(s) substitute corresponding part(s) of the original path.

If the user DANIEL’s default device and directory were

USER$DISK:[DANIEL]

the following rule

user /~*/* /*/www/*

would result in the following path being mapped and used

12–8 Request Processing Configuration

/user$disk/daniel/www/

Note
Accounts that possess SYSPRV, are CAPTIVE, have been DISUSERED or that have
expired passwords will not be mapped. A ‘‘directory not found’’ error report is returned.

12.5.4 EXEC/UXEC and SCRIPT, Script Mapping Rules

Also see ‘‘WASD Web Services - Scripting’’ for further information.

The EXEC/UXEC and SCRIPT directives have the variants EXEC+/UXEC+ and SCRIPT+.
These behave in exactly the same fashion and simply mark the rule as representing a CGIplus
script environment.

The EXEC/UXEC rules maps script directories.

The SCRIPT rules maps script file names. It behaves a little differently to the EXEC rule,
essentially supplying in a single rule the effect of a MAP then an EXEC rule.

Both rules must have a template and result, and both must end in a wildcard asterisk. The
placement of the wildcards and the subsequent functionality is slightly different however.
Both template and result paths must be absolute (i.e. begin with ‘‘/’’).

1. exec template result

The EXEC rule requires the template’s asterisk to immediately follow the slash terminat-
ing the directory specification containing the scripts. The script name follows immediately
as part of the wildcard-matched string. For example:

exec /htbin/* /wasd_root/script/*

If the URL path matches the template, the result, including the first slash-terminated part
of the wildcard-matched section, becomes the URL format physical VMS file specification
the script to be executed. What remains of the original URL path is used to create the
path information. Process no further rules.

Hence, the EXEC rule will match multiple script specifications without further rules,
the script name being supplied with the URL path. Hence any script (i.e. procedure,
executable) in the specified directory is accessible, a possible security concern if script
management is distributed.

2. exec template (run-time-environment)result

A variation on the ‘‘exec’’ rules allows a Run-Time Environment (RTE) to be mapped. An
RTE is a persistant scripting environment not unlike CGIplus. The essential difference
is an RTE provides an environment in which a variety of scripts can be run. It is often an
interpreter, such as Perl, where the advantages of persistance (reduced response latency
and system impact) are available. For more information on RTEs and how they operate
see the ‘‘WASD Scripting Environment’’ document.

The RTE executable is specified in parentheses prefixed to the mapping result, as show
in this example:

exec /pl-bin/* (cgi-bin:[0000000]perlrte.exe)/wasd_root/src/perl/*

3. script template result

Request Processing Configuration 12–9

The SCRIPT rule requires the template’s asterisk to immediately follow the unique string
identifying the script in the URL path. The wildcard-matched string is the following path,
and supplied to the script. For example:

script /conan* /wasd_root/script/conan*

If the URL path matches the template, the result becomes the URL format physical
VMS file specification for the DCL procedure of the script to be executed (the default file
extension of ‘‘.COM’’ is not required). What remains of the original URL path is used to
create the path information. Process no further rules.

Note
The wildcard asterisk is best located immediately after the unique script identifier.
In this way there does not need to be any path supplied with the script. If even
a slash follows the script identifier it may be mapped into a file specification that
may or may not be meaningful to the script.

Hence, the SCRIPT rule will match only the script specified in the result, making for
finely-granular scripting at the expense of a rule for each script thus specified. It also
implies that only the script name need precede any other path information.

It may be thought of as a more efficient implementation of the equivalent functionlity
using two CERN rules, as illustrated in the following example:

map /conan* /script/conan*
exec /cgi-bin/* /cgi-bin/*

4. uxec template result

The UXEC rule is an analog to the EXEC rule, except it is used to map user scripts.
It requires two mapping asterisks, the first for the username, the second for the script
name. It must be used in conjunction with a SET script=as=~ rule. For example:

SET /~*/cgi-bin/* script=as=~
UXEC /~*/cgi-bin/* /*/www/cgi-bin/*

For further information see User Account Scripting and the ‘‘Scripting Overview, Intro-
duction’’.

Script Location

It is conventional to locate script images in WASD_ROOT:[AXP-BIN] or WASD_ROOT:[VAX-
BIN] (depending on the platform), and procedures, etc. in WASD_ROOT:[CGI-BIN]. These
multiple directories are accessible via the single search list logical CGI-BIN.

Script files can be located in area completely outside of the WASD_ROOT tree. Two
approaches are available.

1. Modify the search list CGI-BIN to include the additional directories. Only should be done
with extreme care.

2. Use mapping rules to make the script accessible. This can be done by using the EXEC or
SCRIPT rule to specify the directory directly as in these examples

12–10 Request Processing Configuration

exec /mycgi-bin/* /site_local_scripts/bin/*
script /myscript* /web/myscripts/bin/myscript.exe*

or by using the MAP rules to make a hierarchy of script locations obvious and accessible,
as in this example

map /cgi-bin/myscripts/* /cgi-bin_myscripts/*
exec /cgi-bin_myscripts/* /web/myscripts/bin/*

EXEC Directories and EXEC Files

Generally directories are specified as locations for script files. This is the more common
application, with the EXEC rules used as in this example

exec /cgi-bin/* /cgi-bin/*

Mapping a file type into an EXEC behaviour is also supported. This allows all files within
the specified path and with the matching file suffix (extension) to be activated as scripts. Of
course a script runtime must be available for the server to be able activate it. The following
example demonstrates mapping all files ending in .CGI in the /web/ tree as executable scripts.

exec /web/*.cgi* /web/*.cgi*

WARNING
Remember scripts are executables. Enabling scripting in a general user area allows
any user to write and execute any script, by default under the scripting account.
Deploy with discretion.

12.5.5 SET Rule

The SET rule does not change the mapping of a path, it just sets one or more characteristics
against that path that affect the subsequent processing in some way. It is a general purpose
rule that conveniently allows the administrator to tell the server to process requests with
particular paths in some ad hoc and generally useful fashion. Most SET parameters are
single keywords that act as boolean switches on the request, some require parameter strings.
Multiple space-separated parameters may be set against against the one path in a single SET
statement.

• ACCEPT=LANG=<parameter> - Allows a path to be marked for language-variant
document processing.

Rule Description

ACCEPT=LANG= DE-
FAULT=<language>

sets the default language

ACCEPT=LANG=
CHAR=<character>

sets the delimiting character

ACCEPT=LANG= VARI-
ANT=<name> | <type>

allows the alternate file-type variant to be specified

Request Processing Configuration 12–11

Rule Description

ACCEPT=LANG= (DE-
FAULT=<language>,
CHAR=<character>)

sets both (etc.)

NOACCEPT=LANG disables language variant processing (on a subtree for
example)

For detailed configuration information see Section 4.8.

• ALERT[=<keyword>] - Marks a path as being of specific interest. When a request
containing this path is detected by the server it puts a message into the the server process
log and perhaps of greater immediate usefulness the increase in alert hits is detected by
HTTPDMON and this (optionally) provides an audible alert. The following is ordered
according to how early in processing the alert is signalled.

Rule Description

ALERT=MAP generates this alert immediately after path mapping (i.e.
before the request actually begins being processed)

ALERT=AUTH after authorization (i.e. when any remote username has been
resolved)

ALERT=<integer> if the response HTTP status matches the specific integer

ALERT=END at the conclusion of process (the default)

NOALERT cancels alerts on this path (perhaps subpath)

• AUTH=<keyword> - Changes the specified characteristic during subsequent authoriza-
tion processing.

Rule Description

[NO]AUTH=ALL All requests matching this path must have been subject
to authorization or fail with a forbidden status. This is
a per-path requivalent of implementing the per-server
/AUTHORIZE=ALL policy, and is a little ‘‘belt and braces’’
in a certain sense, but does permit a site to further avoid
unintended information leakage (in this case through the
failure ensure a given path has authorization).

[NO]AUTH=ONCE If a request path contains both a script component and a
resource component by default the WASD server makes sure
both parts are authorized before allowing access. This can be
disabled using this path setting. When this is done only the
original request path undergoes authorization.

12–12 Request Processing Configuration

Rule Description

AUTH=REVALIDATE=
<hh:mm:ss>

Authorization is cancelled and the client requested to reenter
the username and password if this period expires between
authorized requests. Overrides configuration directive
[AuthRevalidateUserMinutes].

AUTH=SYSUAF= PWDEX-
PURL=<string>

Parallels the [AuthSysUafPwdExpURL] configuration
directive, allowing it to be set on a per-path or virtual service
basis.

• CACHE=<keyword> - The default is to cache files (when caching is enabled, Chapter 11).

Rule Description

CACHE=NONE disables caching of files matching this rule

CACHE=EXPIRES=0 cancels previous mapped expiry

CACHE=EXPIRES=DAY expires on change of day

CACHE=EXPIRES=HOUR expires on change of hour

CACHE=EXPIRES=MINUTE expires on change of minute

CACHE=EXPIRES=<period> sets the expiry period for the entry

CACHE=GUARD=<period> sets the guard period (no reload) for the cache entry

CACHE=MAX=<integer> cache files up to this many kilobytes (overrides [CacheFileK-
BytesMax])

CACHE=[NO]CGI cache CGI-compliant (script) responses

CACHE=[NO]FILE cache files matching this rule (the default)

CACHE=[NO]NET cache any network output

CACHE=[NO]NPH cache NPH (non-parse-header script) responses

CACHE=[NO]SCRIPT cache both CGI and NPH responses

CACHE=[NO]SSI cache SSI document responses

CACHE=[NO]QUERY cache (script) regardless of containing a query string

CACHE=[NO]PERM permanently cache these files

• CGIPLUSIN=<keyword> - Provides control over how CGIplus records on the CGI-
PLUSIN stream are carriage controlled and how the stream is terminated. A little esoteric
certainly; ask Alex Ivanov ;-)

Rule Description

CGIPLUSIN=CC=NONE no carriage control

Request Processing Configuration 12–13

Rule Description

CGIPLUSIN=CC=LF each record has a trailing line feed (0x0a)

CGIPLUSIN=CC=CR a trailing carriage return (0x0d)

CGIPLUSIN=CC=CRLF a trailing line feed then carriage return (0x0d0a)

CGIPLUSIN=[NO]EOF the end of the record stream is indicated using an end-of-file

• CGIPREFIX=<string> - CGI environment variable names are by default prefixed with
‘‘WWW_’’. This may be changed on a per-path basis using this SET rule. To remove the
prefix altogether for selected scripts use ‘‘CGIprefix=’’.

• CHARSET=<string> - This setting allows overriding of the server default ([CharsetDe-
fault] configuration parameter) content-type character set (in the response header) for text
files (plain and HTML). A string is required as in the following example, ‘‘charset=ISO-
8859-5’’.

• CLIENT=<keyword> - Client IP address data is often used during conditional mapping
and as represented by CGI variable data in scripts and interpreter environments. This
setting allows an up-stream proxy/accelerator to provide the actual client IP address via
request header and have that data substitute for the instrinsic IP address of the up-stream
proxy. This provides a level of transparency to server processing via such a proxy.

Rule Description

CLIENT=FORWARDED Substitute the (first) address from the ‘‘Forwarded’’: request
header. Return a 403 status if no ‘‘Forwarded:’’ header
present.

CLIENT=IF=FORWARDED As above but the absence of a ‘‘Forwarded:’’ request header is
not fatal.

CLIENT=LITERAL=<string> Substitue the following string. Intended for testing purposes.

CLIENT=RESET Reset the substituted client data to the original (up-stream
proxy).

CLIENT=XFORWARDEDFOR Substitute the (first) address from the ‘‘X-Forwarded-For’’:
request header. Return a 403 status if no ‘‘X-Forwarded-For:’’
header present.

CLIENT=IF=XFORWARDEDFOR As above but the absence of a ‘‘X-Forwarded-For:’’ request
header is not fatal.

• CONTENT=<string> - The content-type of a file is normally determined by the file’s
type (extension). This setting allows files matching the template to be returned with
the specified content-type. The content-type must be specified as a parameter, e.g.
‘‘content=application/binary’’.

12–14 Request Processing Configuration

• CSS=<URI> | <URL> - Provides a path (URI) or full URL to a stylesheet for a WASD-
generated page (e.g. a directory listing). Adds a

<LINK REL="stylesheet" TYPE="text/css" HREF="uri">

to the page HTML header.

• DICT=<key>=<value> - Set a dictionary entry. See Section 7.5.

• DIR=<keyword> - Allows directory listing to be controlled on a per path basis. These
parallel the coresponding configuration [Dir..] directives.

Rule Description

DIR=[NO]ACCESS allows directory listing

DIR=ACCESS=SELECTIVE allows directory listing if the directory contain the file
.WWW_BROWSABLE

DIR=DELIMIT=<keyword> header, footer, both, none

DIR=[NO]ILINK icon plain-text link can be disabled

DIR=[NO]IMPLIEDWILDCARD add wildcards if not in path

DIR=SORT=<column> pre-sort a listing

DIR=STYLE=<keyword> set the style of a directory listing

‘‘ANCHOR’’ the v8.2 thru v10.3 WASD style
‘‘DEFAULT’’ the current WASD style (v10.4 and
later)
‘‘HTDIR’’ Alex Ivanov’s HTdir style
‘‘ORIGINAL’’ WASD traditional style (before
v8.2)
‘‘SORT’’ listing sortable on column
‘‘TABLE’’ using HTML table layout (v10.4 and
later)
‘‘above2’’ any of the above without horizontal
rules

DIR=TARGET=<string> open the file in another window

‘‘_blank’’ opens the file in a new window or tab
‘‘_self’’ in the same frame
‘‘_parent’’ in the parent frame
‘‘_top’’ in the full body of the window
‘‘framename’’ in the named frame

DIR=THESE=<filespec> restrict listing to specified filename(s)

Request Processing Configuration 12–15

Rule Description

DIR=TITLE=<keyword> format the title of the window (tab)

‘‘0’’ (digit zero) suppress any title
‘‘1..99’’ where 1 is the top-level directory
(device), 2 is the second-level directory, 3 . . . 99
the current directory
‘‘DEFAULT’’ the default for the directory style
‘‘OWNER’’ the VMS account owning the
directory
‘‘REMOTE’’ the remote user name (for X509
authentication the certificate common-name)

DIR=VERSIONS=<integer> list the specified maximum number of file versions, or if an
asterisk all versions

DIR=[NO]WILDCARD allow a directory listing to be ‘‘forced’’ by including wildcards
in the path

• [NO]EXPIRED - This setting allows files in the specified paths to be sent pre-expired.
The browser should always then reload them whenever accessed.

• HTML=<keyword>=<string> - Allows the <BODY> tag, and header and/or footer char-
acteristics and text to be added to selected server generated pages such as directory
listings and error messages.

Rule Description

HTML=BODYTAG= specifies the page <BODY> tag characteristics (e.g.
html=bodytag=‘‘BGCOLOR=#ffffff’’)

HTML=HEADER= the page header text

HTML=HEADERTAG= the <TD> tag characteristics of the header table (e.g.
html=headertag=‘‘BGCOLOR=#cccccc’’)

HTML=FOOTER= the page footer text

HTML=FOOTERTAG= the <TD> tag characteristics of the footer table

The headertag and footertag directives also allow the full table tag to be specified, allowing
greater flexibility with these parts of the page (e.g. html=footertag=‘‘<TABLE BORDER=1
CELLPADDING=10 CELLSPACING=0><TR><TD BGCOLOR=#cccccc>’’.

• HTTP=<parameter> - Explicitly sets an aspect of the HTTP request header.

Rule Description

HTTP=ACCEPT-
CHARSET=<string>

the ‘‘Accept-Charset:’’ field

12–16 Request Processing Configuration

Rule Description

HTTP=ACCEPT-
LANGUAGE=<string>

the ‘‘Accept-Language:’’ field

• HTTP2=<parameter> - Controls an aspect of an HTTP/2 connection, or initiates an
action on that connection.

Rule Description

HTTP2=PROTOCOL=1.1 send the client an HTTP_1_1_REQUIRED error whcich
should cause it to re-request as HTTP/1.1

HTTP2=SEND=GOAWAY[=<integer>]send the client a connection GOAWAY frame with optional
error number

HTTP2=SEND=PING send the client an HTTP/2 ping

HTTP2=SEND=RESET[=<integer>] send the client a stream (request) reset (close) with optional
error number

HTTP2=WRITE=LOW | NORMAL | HIGHthis stream (request) will write to the network at the specified
priority relative to other data on the connection

• INDEX=<string> - This setting provides the ‘‘Index of’’ (directory listing) format string
for directory paths matching the template. It uses the same formatting as can be supplied
with a URL and overrides any query string passed via any URL.

• [NO]LOG - When server access logging is enabled the default is to log all requests. The
NOLOG setting suppresses logging for requests involving the specified path template.

• MAP=<parameter> - Controls aspects of the mapping processing itself (from that point
in the rules onwards of course).

Rule Description

[NO]MAP=ELLIPSIS By default the use of the VMS file specification ellipsis wilcard
(‘‘...’’) is not allowed. This enables this for the path specified.
Use with caution.

[NO]MAP=ONCE Normally, when a script has been identified during mapping,
the resultant path information is also mapped in a second
pass. This can be suppressed by SETing the path as
MAP=ONCE. The resultant path is then given to the script
without further processing.

Request Processing Configuration 12–17

Rule Description

MAP=RESTART Causes an immediate change to the order of rule processing.
Instead of the next rule, the first rule in the configuration is
processed. This is intended to remove the need for copious
repetition in the rule set. A common or set of common
processing blocks can be established near the start of the
rule set and be given requests from processing points further
down in the rules. It is intended to be used only once or
perhaps twice and will abort the request if it occurs too often.
Can be detected using the restart: conditional (Section 7.3).
Use with caution! Injudicious use would make unexpected
mappings expected!

[NO]MAP=ROOT=<string> Prefixes the results of following rules with the specified path
so that they are all subordinate to it. This also populates the
DOCUMENT_ROOT CGI variable. See Document Root.

[NO]MAP=SET=IGNORE All path SETings following an IGNORE are completely
ignored (not applied to the mapping or request characteristics)
until a subsequent NOINGORE is encountered.

[NO]MAP=SET=REQUEST All path SETings following a NOMAP=SET=REQUEST
are only applied to the mapping and not to the request’s
characteristics until a subsequent MAP=SET=REQUEST is
encountered. Intended for use during callouts. These can be
detected using the callout: conditional (Section 7.3).

[NO]MAP=URI Normally mapping is performed on the request path.
This SETing replaces the path with the full, raw, request
URI (undecoded path plus any query string). This allows
subsequent mapping rules to be applied to the full URI
and therefore path components to be remapped into query
components, and query components into path components
(using specified substitution, see Section 6.4).

• NOTEPAD=[+]<string> - The request notepad is a string storage area that can be used to
store and retrieve ad hoc information during path mapping and subsequent authorization
processing. Multiple notepad=string set against the one request override previous settings
unless preceded by a leading plus symbol, when it appends. These contents then can
be subsequently detected using the notepad: conditional keyword (Section 7.3.1) or the
obsolescent ’NO’ mapping conditional.

• ODS=<keyword> - Directs the server on how to process file names for naming conventions
other than ODS-2 (the default). Be sure to add an asterisk at the end of the specific ODS
path otherwise only the top-level will set!

12–18 Request Processing Configuration

Rule Description

ODS=2 is basically redundant, because if a path is not indicated as
anything else it is assumed to be ODS-2. This can be used for
clarity in the mapping rules if required.

ODS=5 is used to indicate that a particular path maps to files on
an ODS-5 (EFS) volume and so the names may comply to
extended specifications. This changes the way file names are
processed, including for example the replacement of invalid
RMS characters (see below).

ODS=ADS is used to process file names that are encoded using the
Advanced Server (PATHWORKS 6) schema.

ODS=NAME=8BIT | UTF8 | DEFAULTWhen a file is PUT (created) using WebDAV or upload, for
non-7bit ASCII file names use native ODS-5 8bit syntax
(default) or UTF-8 encoded character sequences.

ODS=PWK is used for processing file names encoded using the
PATHWORKS 4/5 schema.

ODS=SMB is a synonym for ODS=ADS and makes clear the path is also
being served by Samba.

ODS=SRI for file names encoded using the SRI schema (used by
MultiNet and TCPware NFS, FTP and other utilities).

• QUERY-STRING=<string> - Set the request’s query string to that specified in the
directive. Overloads any current query string. Specify URL-encoded if the characters
require it.

• PROXY=<parameter> - Sets an aspect of proxy request processing.

Rule Description

PROXY=[NO]AFFINITY sets client to origin server affinity.

PROXY=BIND=<ip-address> makes outgoing proxy requests appear to originate from this
IP address. Must be an address that the media can be bound
to.

PROXY=CHAIN=<host:port> makes outgoing proxy requests chain to this up-stream proxy
server.

PROXY=CHAIN=CRED=<username:password>provides proxy authentication credentials to an up-stream
proxy server.

Request Processing Configuration 12–19

Rule Description

PROXY=FORWARDED controls generatation a proxy ‘‘Forwarded:’’ request field.
This optional field contains information on the proxy server
and as a further option the client name or IP address.

‘‘PROXY=NOFORWARDED’’ disables
‘‘PROXY=FORWARDED[=BY]’’ contains the by
component.
‘‘PROXY=FORWARDED=FOR’’ contains by and
the for components (client host name). Also
used with WASD_TUNNEL (proxy tunneling).
‘‘PROXY=FORWARDED=ADDRESS’’ contains
by and the for components (client host address).
Also used with WASD_TUNNEL (proxy
tunneling).

PROXY=HEADER=<name>[=<string>]removes or sets the value of the specified proxied request
header. Examples:

‘‘PROXY=HEADER=referer’’ would remove the
‘‘Referer:’’ header field from the proxied request
‘‘PROXY=HEADER=referer=http://whatever/’’
would set the ‘‘Referer:’’ header field to the
specified URL
‘‘PROXY=HEADER=user-agent=Nosey 1.0’’
would set the ‘‘User-Agent:’’ header field to the
‘‘Nosey 1.0’’

PROXY=REVERSE=[NO]AUTH suppresses propogation of any ‘‘Authorize’’ header.

PROXY=REVERSE= LOCA-
TION=<string>

rewrites the matching ‘‘Location:’’ header field URL of a 302
response from an internal, reverse-proxied server.

PROXY=REVERSE=
[NO]VERIFY

sets a specialized authorization capability. See WASD_
ROOT:[SRC.HTTPD]PROXYVERIFY.C for further infor-
mation.

PROXY=TUNNEL=REQUEST=<string>allows the originating end of a WASD tunnel to specify an
HTTP request line or even request header to be provided to
the tunnel target end when the connection is established.

PROXY=UNKNOWN causes the server to propagate all request field provided
by the client to the proxied server (by default WASD only
propagates those it recognises).

12–20 Request Processing Configuration

Rule Description

PROXY=XFORWARDEDFOR=
<keyword>

controls generation of a proxy ‘‘X-Forwarded-For:’’ request
field. This optional field (a defacto standard originally from
the Squid caching package) contains the name or IP address
of the proxied client.

‘‘PROXY=NOXFORWARDEDFOR’’ disables
‘‘PROXY=XFORWARDEDFOR[=ENABLED]’’
enables
‘‘PROXY=XFORWARDEDFOR=ADDRESS’’
field contains client host address
‘‘PROXY=XFORWARDEDFOR=UNKNOWN’’
field contains unknown for the client host
name

• PUT=<parameter> - Per-path control over HTTP POST or PUT request body.

Rule Description

PUT=MAX=<integer> | * Maximum number of kilobytes allowed for a request body,
if ‘‘*’’ then effectively unlimited (per-path equivalent of the
global directive [PutMaxKbytes]).

PUT=RFM=FIX512 | STM | STMCR | STMLF | UDFWhen a request body is uploaded into the file-system and the
content-type is not text this determines the file record format.
The precedence for determining the created file record format
is [AddType] RFM:, then any per-path PUT=RFM= mapping
rule, then [PutBinaryRFM], then the default of UDF.

• [NO]PROFILE - When using the server /PROFILE qualifier allow or disallow the
authentication profile when assessing access for a specific path. Must be used in
conjunction with an equivalent authorisation rule (WASD_CONFIG_AUTH) flagging the
profile use against an equivalent path (see ‘‘WASD Web Services - Features and Facilities’’
).

• REGEX=<keyword> - The default regular expression syntax is POSIX EGREP but
can be specified on a per-path basis using one of the following keywords; AWK,
ED, EGREP, GREP, POSIX_AWK, POSIX_BASIC, POSIX_EGREP, POSIX_EXTENDED,
POSIX_MINIMAL_BASIC, POSIX_MINIMAL_EXTENDED, SED. When changed from
the default enabled (WASD) case-insensitivity is lost. Reset expression syntax to global
default using regex=default. Note that SETing the regular expression syntax in this way
adds overhead as each expression then needs to be regex-compiled with each match.

• REPORT=<parameter> - This setting allows error and other server-generated reports
for any specified path to changed between detailed and basic (Section 4.10.1).

Rule Description

REPORT=BASIC include less detail in error message

Request Processing Configuration 12–21

Rule Description

REPORT=DETAILED includes more detail

REPORT=TUNNEL brief, non-HTML error messages suitable for proxy tunnel

REPORT=4<nn>=<nnn> maps one 400 class HTTP status to another (to conceal the
true origins of some error messages)

• RMSCHAR=<character> - This setting applies to ODS-2 paths (the default) only. Paths
SET as ODS-5 do not have this applied. During rule mapping of a path to a VMS file
specification, if an RMS-invalid character (e.g. ‘‘+’’) or syntax (e.g. multiple periods) is
encountered a dollar symbol is substituted in an attempt to make it acceptable. This
setting provides an alternate substitution character. Any general RMS-valid character
may be specified (e.g. alpha-numeric, ’$’, ’-’ or ’_’, although the latter three are probably
the only REAL choices). A single character is required as in the following example,
‘‘RMSchar=_’’.

• RESPONSE=HEADER=<parameter> - changes the way in which a response header is
generated by the server.

Rule Description

RESPONSE=GZIP=<keyword> controls generation of GZIPed response bodies (Section 4.4)

‘‘ALL’’ suitable responses
‘‘NONE’’ of the responses
‘‘integer’’ kilobytes, responses known to be this
size or greater

RESPONSE=HEADER=BEGIN suppresses the response header terminating empty line so
that the file or other resource can supply additional header
fields. It, of course, must supply the header-terminating
empty line before beginning to supply the response body.

RESPONSE=HEADER=FULL reverts to normal response header generation behaviour.

RESPONSE=HEADER=NONE suppresses the normal response header generation. It is
considered the file or other resource contains and will supply
the full HTTP response (in a non-parse-header script fashion).

RESPONSE=HEADER=ADD=<string>appends the specified string to the response header. Of course
the string should be a legitimate HTTP response field and
value line. This mapping can be used to add a particular
response directive to matching requests.

• RESPONSE=VAR=<parameter> - Where a response is being provided from a variable-
length record file each record should be terminated as follows.

Rule Description

RESPONSE=VAR=CRLF carriage-return+line-feed (0x0D then 0x0A)

12–22 Request Processing Configuration

Rule Description

RESPONSE=VAR=LF line-feed (0x0A) character (default)

RESPONSE=VAR=NONE nothing should be appended to the record

• SCRIPT=<parameter> - Provides controls over various aspects of the scripting envi-
ronment.

For scripting detail see the ‘‘WASD Web Services - Scripting’’ document.

Rule Description

SCRIPT=AS=<parameter> for non-server account scripting this rule allows the user
account to be either explicitly specified or substituted through
the use of the tilde character ‘‘~’’ or the dollar ‘‘$’’.

SCRIPT=BIT-BUCKET=
<hh:mm:ss>

specifies the period for which a script continues to execute
if the client disconnects. Overrides the WASD_CONFIG_
GLOBAL [DclBitBucketTimeout] configuration directive.

[NO]SCRIPT=BODY=DECODE instructs the server to decode (un-chunk and/or un-GZIP)
an encoded request body before transfering it to the script.
The script must be aware of this and change its processing
accordingly. See Section 4.4.

SCRIPT=CONTROL=<string> Supply the specified string to the CGI processor as if the
a script had provided it using a ‘‘Script-Control:’’ response
header field.

SCRIPT=COMMAND=<string> allows additional parameters and qualifiers to be passed to
the script activation command line. First parameter must be
an asterisk to use the server resolved script command. If the
first parameter is not an asterisk it substitutes for the script
activation verb. Subsequent parameters must be as they
would be used on the command line. The following setting

set /cgi-bin/example* script=command="* \
/ONE /TWO=THREE FOUR"

would result in the hypothetical script being command-
line activated

$ EXAMPLE /ONE /TWO=THREE FOUR

SCRIPT=CPU=<hh:mm:ss> specifies that the server should not allow the script to use
more than the specified quantity of CPU time. This is
approximate, due to the way the server administers scripting.
It can serve to prevent scripts from consuming indefinite
quantities of system resources.

Request Processing Configuration 12–23

Rule Description

SCRIPT=DEFAULT=<string> sets the default directory for the script environment (a SET
DEFAULT immediately prior to script activation). This can
be suppressed (for backward compatibility purposes) using
a ‘‘#’’ as the target directory. This string is reflected in CGI
variable SCRIPT_DEFAULT so that CGIplus script and RTE
engines can be informed of this setting for a particular script’s
environment. Unix syntax paths may also be specified. If
the default begins with a ‘‘/’’ character the SET DEFAULT
is not performed but the SCRIPT_DEFAULT variable is
set appropriately allowing the equivalent of a chdir() to be
performed by the scripting environment.

[NO]SCRIPT=FIND by default the server always confirms the existance and
accessability of a script file by searching for it before
attempting to activate it. If it does not exist it reports an
error. It may be possible a Run-Time Environment (RTE) may
require to access its own script file via a mechanism available
only to itself. The server script search may be disabled by
SETing the path as nofind, for example ‘‘script=nofind’’. The
script path and filename is directly passed to the RTE for it
to process and activate.

SCRIPT=LIFETIME=<hh:mm:ss> provides a per-path (and hence per-script) value for a script
process zombie (idle scripting process) or idle CGIplus and
RTE process lifetime. This per-path SETing overrides the
respective [DclZombieLifeTime] and [DclCGIplusLifeTime]
global directives.

SCRIPT=PARAM=<name=value> allows non-CGI environment variables to be associated with
a particular script path. The name component becomes
a variable containing the specified value passed to the
script. Multiple, comma-separated name=value pairs may
be specified. The value may be quoted. The following path
setting

set /cgi-bin/example* \
script=params=(first=one,second="Two (and Three)")

would result in additional CGI variables available to the
script

WWW_FIRST == "one"
WWW_SECOND == "Two (and Three)"

Multiple script=params set against the one request
override previous settings unless the parameters are
specified with a leading plus symbol, as in

set /cgi-bin/example* \
script=params=+(third=three,fourth="number 4")

12–24 Request Processing Configuration

Rule Description

[NO]SCRIPT=PATH=FIND directs the server to check for and report if the file specified
in the path does not exist before activating the script process.
Normally this would be left up to the script.

[NO]SCRIPT=QUERY=NONE saves a small amount of overhead by suppressing the
decomposition of any query string into key or form fields
for those environments that do this for themselves.

[NO]SCRIPT=QUERY=RELAXED normally when the CGI variables are being prepared for a
script and the query string is parsed an error is reported
if it uses x-www-form-urlencoded format and the encoding
contains an error. However some scripts use non-strict
encodings and this rule allows those scripts to receive the
query strings without the server complaining first.

[NO]SCRIPT=SYNTAX=UNIX provides the SCRIPT_FILENAME and PATH_TRANSLATED
CGI variables in Unix file-system syntax rather than VMS
file-system syntax (i.e. /DEVICE/dir1/dir2/file.type rather
than DEVICE:[DIR1.DIR2]FILE.TYPE).

[NO]SCRIPT=SYMBOL=
TRUNCATE

allows otherwise aborted script processing to continue.
Script CGI variables are provided using DCL symbols. With
VMS V7.3-2 and later symbol capacity is in excess of 8000
characters. For VMS V7.3-1 and earlier it has a limit of
around 1000 characters. If a symbol is too large the server by
default aborts the request generating a 500 HTTP status. If
the above mapping is made (against the script path) excessive
symbol values are truncated and such symbol names placed
into a special CGI variable named SERVER_TRUNCATE.

• [NO]SEARCH=NONE - Do not activate the automatic document search script for any
query strings associated with this path.

• SERVICE=<string> - When mapping is concluded move the request to this virtual
service or to the first virtual service matching a wildcarded specification.

• SSI=<parameter> - Controls aspects of Server-Side Include engine behaviour.

Rule Description

[NO]SSI=PRIV SSI documents cannot contain privileged directives (e.g. <–
#exec ... –>) unless owned by SYSTEM ([1,4]) or are in path
set as allowing these directives. Use SSI=priv to enable this,
NOSSI=priv to disable. Caution: these SSI directives are
quite powerful, use great care when allowing any particular
document author or authors to use them.

Request Processing Configuration 12–25

Rule Description

SSI=EXEC=<string> where <string> is a comma-separated list of the #dcl
parameters permitted for the path allows fine-grained control
of what capabilities are enabled. The parameter ‘‘#’’ enables
SSI on a per-path basis.

ssi=exec=say,show
ssi=exec=#

• SSLCGI=<keyword> - Enables and sets the type of CGI variables used to represent a
Secure Sockets Layer (SSL) CGI variables.

When enabling these variables it is advised to increase the WASD_CONFIG_GLOBAL
[BufferSizeDclCommand] and [BufferSizeCgiPlusIn] directives by approximately 2048.

Rule Description

NOSSLCGI disables the facility

SSLCGI=none disables the facility

SSLCGI=Apache_mod_SSL provides Apache mod_ssl style variables

SSLCGI=Apache_mod_SSL_
extens

provides variables representing X509 V3 extensions from the
server certificate

SSLCGI=Apache_mod_SSL_
client

provides variables representing X509 V3 extensions from the
client certificate

SSLCGI=Purveyor provides Purveyor style variables

• [NO]STMLF - Specify files to be automatically converted to Stream-LF format. The
default is to ignore conversion. STMLF allows selected paths to be converted.

• THROTTLE=<parameter> - Controls the concurrent number of scripts being processed
on the path.

See Section 4.5.

Rule

THROTTLE=n[/u][,n,n,n,hh:mm:ss,hh:mm:ss]

THROTTLE=FROM=<n>

THROTTLE=USER=<u>

THROTTLE=TO=<n>

THROTTLE=RESUME=<n>

THROTTLE=BUSY=<n>

THROTTLE=TIMEOUT=QUEUE=<hh:mm:ss>

12–26 Request Processing Configuration

Rule

THROTTLE=TIMEOUT=BUSY=<hh:mm:ss>

• TIMEOUT=<parameter> - Sets the appropriate timeout period on a per-path basis. The
string ‘‘none’’ can be used to specify no timeout.

These parallel the respective configuration timeout periods. See Section 8.2.

Rule Description

TIMEOUT=<hh:mm:ss>,
<hh:mm:ss>,<hh:mm:ss>

Keep-alive, then no-progress, then output timeouts.

TIMEOUT=KEEPALIVE=
<hh:mm:ss>

Keep idle network connections alive for this long.

TIMEOUT=NOPROGRESS=
<hh:mm:ss>

Terminate connection when no data is transferred to the
client for this period.

TIMEOUT=OUTPUT=
<hh:mm:ss>

Terminate connection after this period when no response data
has been sent.

NOTIMEOUT No timeouts are applied to the request.

• WEBDAV=<parameter> - Controls aspects of WebDAV processing or behaviour.

Rule Description

WEBDAV=[NO]HIDDEN list (default) or hide U*x hidden files (i.e. those with
names beginning with period)

WEBDAV=[NO]LOCK allow/apply WebDAV locking to this path

WEBDAV=[NO]PROFILE WebDAV access according to SYSUAF profile

WEBDAV=[NO]PROP allow/apply WebDAV ’dead’ property(ies) to this path

WEBDAV=[NO]PUT=LOCK a resource must be locked before a PUT is allowed

WEBDAV=[NO]READ WebDAV methods allowed read this tree

WEBDAV=[NO]SERVER WebDAV access as server account (best effort)

WEBDAV=[NO]WINPROP when NOWINPROP windows properties are ignored
and emulated

WEBDAV=[NO]WRITE WebDAV methods allowed write to this path (implied
read)

WEBDAV=LOCK=TIMEOUT=DEFAULT= hh:mm:ss

WEBDAV=LOCK=TIMEOUT=MAX= hh:mm:ss

WEBDAV=META=DIR= per-path equivalent of global [WebDAVmetaDir]

• WEBSOCKET=<parameter> - Controls aspects of WebSocket processing or behaviour.

Request Processing Configuration 12–27

Rule Description

WEBSOCKET=INPUT=integer Specifies the size of the WEBSOCKET_INPUT mailbox buffer;
in bytes.

WEBSOCKET=OUTPUT=integer Specifies the size of the WEBSOCKET_OUTPUT mailbox
buffer; in bytes.

Of course, as with all mapping rules, paths containing file types (extensions) may be specified
so it is quite easy to apply settings to particular groups of files. Multiple settings may be
made against the one path, merely separate set directives from each other with white-space.
If a setting string is required to contain white-space enclose the string with single or double
quotes, or curly brackets. The following example gives a small selection of potential uses.

examples of SET rule usage

disable caching for selected paths
set /wasd_root/src/* NOcache
set /sys$common/* NOcache
enable stream-LF conversion in selected directory trees
set /web/* stmlf
set /wasd_root/* stmlf
respond with Cyrillic character set(s) from relevant directories
set /*/8859-5/* charset=ISO-8859-5
set /*/koi8-r/* charset=KOI8-R
the Sun Java tutorial when UNZIPped contains underscores for invalid characters
set /vms/java/tutorial/* RMSchar=_
if a request has "/plain-text/" in its path then ALWAYS return as plain-text!
set /*/plain-text/* content=text/plain
map /*/plain-text/* /*/*
same for "/binary/"
set /*/binary/* content=text/plain
map /*/binary/* /*/*
indicate extended file specifications on this path
set /Documents/* ODS=5
pass /Documents/* /ods5_device/Documents/*
throttle this script’s execution, 5 executing, unlimited waiting
set /cgi-bin/big_script* throttle=5
disable server script search for this RTE
set /onerte/* script=nofind
exec /onerte/* (CGI-BIN:[000000]ONERTE.EXE)/wasd_root/src/one/*

Postfix SET Rule

Path SETings may appended to any rule that contains both a template and result. This
makes it possible to apply path SETings using matching final rules. For example a matching
PASS rule does not require a separate, preceding SET rule containing the same path to also
apply required SETings. This is more efficient (requiring less pattern matching) and tends
to make the rule set less cluttered.

12–28 Request Processing Configuration

examples of postfix SET rule usage

if a request has "/plain-text/" in its path then ALWAYS return as plain-text!
map /*/plain-text/* /*/* content=text/plain
same for "/binary/"
map /*/binary/* /*/* content=text/plain
indicate extended file specifications on this path
pass /Documents/* /ods5_device/Documents/* ODS=5
throttle this script’s execution, 5 executing, unlimited waiting
script /big_script* /cgi-bin/big_script* throttle=5

12.6 Reverse Mapping
Path mapping is required to get from web-space into file-space, and that mapping is
not necessarily one-to-one. That is, /web/doc/ may not be WEB:[DOC] but for example,
DKA0:[WEB.DOC] so that mapping would be

pass /web/* /dka0/web/*

Mapping paths in reverse is needed to get something like DKA0:[WEB.DOC]THIS.TXT (that
may come from a $SEARCH result) back into the web-space of /web/doc/this.txt. So WASD
needs paths that may be mapped using the result back to the template. In simple mappings
the one rule can serve both purposes. In some situations explicit, extra rules are needed.

The above example is trivial, and if WASD needs to turn something like DKA0:[DOC]THIS.TXT
into a web-space representation (URI) it makes the file-space specification into URI syntax
(i.e. /dka0/web/doc/this.txt) and then scans the rules comparing that to result strings in the
MAP rules. When one matches, the template component is used to generate a web-space rep-
resentation - the reverse of what was done when the request was initially being processed.

The non-trivial example is often associated with concealed, search-list devices. For example,
the somewhat contrived

$ DEFINE /SYSTEM /TRANSLATION=CONCEALED WEB DKA100:[WEB1.],DKA200:[WEB2.]

with which the mapping from web- to file-space can be

pass /web/* /web/*

using the logical device, and quite naturally maps into file-space. WASD’s file-system ac-
tions are complex and low-level, often needing to access to the underlying device (and
so tend to $PARSE NOCONCEAL). Results from the above mapping can come back
DKA100:[WEB1]THIS.TXT and DKA200:[WEB2]THAT.TXT and so the above mapping can’t
be used to get back into web-space because there is no template with a matchable rule.

In such a case there is a need to add explicit reverse-mapping rules (often immediately
following the forward mapping rule for convenience of grouping, but rules are also a little
position sensitive so some skill is required) for the purpose of getting the underlying file
specifications into a form for web consumption. In the above scenario an example would be

pass /web/* /web/*
pass /web/* /dka100/web1/*
pass /web/* /dka200/web2/*

where the latter two are never hit during forward mapping (because the first rule will always
map a request URI beginning /web/...) but will be hit during reverse-mapping. If a reverse

Request Processing Configuration 12–29

mapping exhausts the rules before finding a match the NO:[REVERSE.MAPPING.FOR.THIS]FILE.PATH!
mapping is explicitly generated.

It is not always straight-forward and sometimes a decision is necessary about how the web-
space is to be presented to the clients. For instance, while you easily can have multiple
web-space views of the one file-space area, it is less straight-forward to have multiple web-
space reverse mappings of the one file-space (as normally only the first matching rule will
ever be reverse-mapped).

12.7 Mapping Examples
The example mapping rule file for the WASD HTTP server can be viewed.

online Web link

Example of Map Rule

The result string of these rules may or may not correspond to to a VMS physical file system
path. Either way the resulting rule is further processed before passing or failing.

1. The following example shows a path ‘‘/web/unix/shells/c’’ being mapped to ‘‘/web/software/unix/scripts/c’’,
with this being used to process further rules.

map /web/unix/* /web/software/unix/*

Examples of Pass Rule

1. This example shows a path ‘‘/web/rts/home.html’’ being mapped to ‘‘/user$rts/web/home.html’’,
and this returned as the mapped path.

pass /web/rts/* /user$rts/web/*

2. This maps a path ‘‘/icon/bhts/dir.gif’’ to ‘‘/web/icon/bhts/dir.gif’’, and this returned as the
mapped path.

pass /icon/bhts/* /web/icon/bhts/*

3. This example illustrates HTTP status code mapping. Each of these does basically the
same thing, just using one of the three possible delimiters according to the characters
required in the message. The server generates a 403 response with has as its text the
following message. (Also see the conditional mapping examples.)

pass /private/* "403 Can’t go in there!"
pass /private/* ’403 "/private/" is off-limits!’
pass /private/* {403 Can’t go into "/private/"}

Examples of Fail Rule

1. If a URL path ‘‘/web/private/home.html’’ is being mapped the path would immediately be
failed.

fail /web/private/*

12–30 Request Processing Configuration

2. To ensure all access fails, other than that explicitly passed, this entry should be included
the the rules.

fail /*

Examples of Exec and Script Rules

1. If a URL path ‘‘/htbin/ismap/web/example.conf’’ is being mapped the ‘‘/wasd_root/script/’’
must be the URL format equivalent of the physical VMS specification for the directory lo-
cating the script DCL procedure. The ‘‘/web/example.conf’’ that followed the ‘‘/htbin/ismap’’
in the original URL becomes the translated path for the script.

exec /cgi-bin/* /cgi-bin/*

2. If a URL path ‘‘/pl-bin/example/this/directory/and-file.txt’’ is being mapped the script name
and filename become ‘‘/pl-bin/example’’ and ‘‘WASD_ROOT:[SRC.PERL]EXAMPLE.PL’’
respectively, the path information and translated become ‘‘/this/directory/and-file.txt’’
and ‘‘THIS:[DIRECTORY]AND-FILE.TXT’’, and the interpreter (run-time environment)
activated to interpret the script is CGI-BIN:[000000]PERLRTE.EXE.

exec /pl-bin/* (cgi-bin:[000000]perlrte.exe)/wasd_root/src/perl/*

3. If a URL path ‘‘/conan/web/example.hlb’’ is being mapped the ‘‘/wasd_root/script/conan’’
must be the URL format equivalent of the physical VMS specification for the DCL
procedure. The ‘‘/web/example.hlb’’ that followed the ‘‘/conan/’’ in the original URL
becomes the translated path for the script.

script /conan* /wasd_root/script/conan*

Example of Redirect Rule

1. If a URL path ‘‘/AnotherGroup/this/that/other.html’’ is being mapped the URL would be
redirected to ‘‘http://host/this/that/other.html’’

redirect /AnotherGroup/* http://host/group/*

12.8 Virtual Servers
As described in Section 4.3, virtual service syntax may be used with mapping rules to
selectively apply rules to one specific service. This example provides the essentials of using
this syntax. Note that service-specific and service-common rules may be mixed in any order
allowing common mappings (e.g. for scripting) to be shared.

Request Processing Configuration 12–31

a mapping rule example of virtual servers
[[alpha.domain.name:80]]
ALPHA is the only service allowing access to VMS help directory
pass /sys$common/syshlp/*
[[beta.domain.name:80]]
good stuff is only available from BETA
pass /good-stuff/*
BETA has its own error report format, the others share one
pass /errorreport /httpd/-/errorreportalpha.shtml
[[gamma.domain.name:80]]
gamma responds with documents using the Cyrillic character set
set /* charset=ISO-8859-5
[[*]]
common file and script mappings
exec /cgi-bin/* /cgi-bin/*
exec+ /cgiplus-bin/* /cgi-bin/*
script+ /help/* /cgiplus-bin/conan/*
pass /errorreport /httpd/-/errorreport.shtml
now the base directories for all documents
[[alpha.domain.name:80]]
/* /web/alpha/*
[[beta.domain.name:80]]
/* /web/beta/*
[[gamma.domain.name:80]]
/* /web/gamma/*
[[*]]
catch-all rule (just in case :-)
pass /* /web/*

The Server Administration page WATCH report provides the capability to view the rule
databse as well as rule mapping during actual request processing, using the WATCH facility.

12.9 Conditional Mapping

Deprecated and Discouraged
See Chapter 7 for current funtionality.

As this has been deprecated for some years now the documentation for this function-
ality has been removed.

For backward-reference see the ‘‘WASD Hypertext Services - Technical Overview’’
document for release v9.3 or earlier.

12.10 Mapping User Directories (tilde character (‘‘~’’))
The convention for specifying user web areas is ‘‘/~username/’’. The basic idea is that the user’s
web-available file-space is mapped into the request in place of the tilde and username.

12–32 Request Processing Configuration

12.10.1 Using The SYSUAF

The USER rule maps a VMS user account default device and directory (i.e. home directory)
into a request path (Section 12.5.3). That is, the base location for the request is obtained from
the VMS systems SYSUAF file. A user’s home directory information is cached, to reduce load
on the authorization databases. As this information is usually quite static there is no timeout
period on such information (although it may be flushed to make room for other user’s). Cache
contents is include in the Mapping Rules Report and is implicitly flushed when the server’s
rules are reloaded.

The following is a typical usage of the rule.

USER /~*/* /*/www/*

Note the ‘‘/www’’ subdirectory component. It is stongly recommended that users never be
mapped into their top-level, but into a web-specific subdirectory. This effectively ‘‘sandboxes’’
Web access to that subdirectory hierarchy, allowing the user privacy elsewhere in the home
area.

To accomodate request user paths that do not incorporate a trailing delimiter after the
username the following redirect may be used to cause the browser to re-request with a more
appropriate path (make sure it follows the USER rule).

REDIRECT /~* ///~*/

WASD also ‘‘reverse maps’’ VMS specifications into paths and so requires additional rules to
provide these mappings. (Reverse mapping is required during directory listings and error
reporting.) For the continuing example the following rules would be required (and in the
stated order).

USER /~*/* /*/www/*
REDIRECT /~* ///~*/
PASS /~*/* /user$disk/*/www/*

Where user home directories are spread over multiple devices (physical or concealed logical)
a reverse-mapping rule would be required for each. Consider the following situation, where
user directories are distributed across these devices (concealed logicals)

USER$GROUP1:
USER$GROUP2:
USER$GROUP2:
USER$OTHER:

This would require the following mapping rules (in the stated order).

USER /~*/* /*/www/
PASS /~*/* /user$group1/*/www/*
PASS /~*/* /user$group2/*/www/*
PASS /~*/* /user$group3/*/www/*
PASS /~*/* /user$other/*/www/*

Accounts with a search list as a default device (e.g. SYS$SYSROOT) present particular
complications in this schema and should be avoided.

Note
Accounts that possess SYSPRV, are CAPTIVE, have been DISUSERED or that have
expired passwords will not be mapped. A ‘‘directory not found’’ error report is returned.

Request Processing Configuration 12–33

This error was chosen to make it to make more difficult to probe the authorization
environment, determining whether accounts exist or not.

Of course vanilla mapping rules may be used to provide for special cases. For instance, if
there is requirement for a particular, privileged account to have a user mapping that could
be provided as in the following (rather exagerated) example.

PASS /~system/* /sys$common/sysmgr/www/*
USER /~*/* /*/www/
PASS /~*/* /user$disk/*/www/*

User Account Scripting

In some situations it may be desirable to allow the average Web user to experiment with
or implement scripts. With WASD 7.1 and later, and VMS V6.2 and later, this is possible.
Detached scripting must be enabled, the /PERSONA startup qualifier used, and appropriate
mapping rules in place. If the SET ‘‘script=as=’’ mapping rule specifies a tilde character then
for a user request the mapped SYSUAF username is substituted.

The following example shows the essentials of setting up a user environment where access to
a subdirectory in the user’s home directory, [.WWW] with script’s located in a subdirectory of
that, [.WWW.CGI-BIN].

UXEC /~*/cgi-bin/* /*/www/cgi-bin/* script=as=~
USER /~*/* /*/www/*
REDIRECT /~* /~*/
PASS /~*/* /dka0/users/*/*

For more detailed information see the ‘‘Scripting Overview, Introduction’’.

12.10.2 Without Using The SYSUAF

Deprecated and Discouraged
See Section 12.10 for current funtionality.

As this has been deprecated for some years now the documentation for this function-
ality has been removed.

For backward-reference see the ‘‘WASD Hypertext Services - Technical Overview’’
document for release v9.3 or earlier.

12.11 Cross Origin Resource Sharing
Cross-site HTTP requests are HTTP requests for resources from a domain different to
the domain of the resource making the request. For instance, a resource loaded from
domain one (http://domain.example) such as an HTML web page, makes a request for
a resource on domain two (http://domain.foo), such as an image, using the img element
(http://domain.foo/image.jpg). This occurs very commonly on the web today. Pages load a
number of resources in a cross-site manner, including CSS stylesheets, images and scripts,
and other resources.

12–34 Request Processing Configuration

Cross-site HTTP requests initiated from within browser-based applications have been subject
to well-known restrictions, for well-understood security reasons. In particular, this meant
that an actively processing web application could only make HTTP requests to the domain
it was loaded from, and not to other domains. Developers expressed the desire to safely
evolve capabilities to make cross-site requests, for better, safer web applications. The
Web Applications Working Group within the W3C has recommended the new Cross-Origin
Resource Sharing (CORS) mechanism, which provides a way for web servers to support cross-
site access controls, which enable secure cross-site data transfers.

Basic References

This section is not a CORS reference, just the WASD implementation. Readers are referred
to more authoritative CORS resources.

http://www.w3.org/TR/cors/
http://www.html5rocks.com/en/tutorials/cors/
http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://developer.mozilla.org/en-US/docs/HTTP/Access_control_CORS

WASD CORS

WASD supports CORS using mapping rules. This means cross-origin requests are evaluated
prior to accessing any resources or activating any scripts, etc. If the request has an ‘‘Origin: ..’’
header and the path has been set cors=origin=.. the server performs preflighted and request
checks. If CORS authorised adds CORS response headers. If not CORS authorised adds
nothing. Some significant understanding of the purpose and operation of CORS is required
to tailor the provision of the required response headers.

Rule Description

CORS=AGE=integer seconds Access-Control-Max-Age: response header

CORS=CRED=true | false Access-Control-Allow-Credentials: response header

CORS=EXPOSE=header[,header2,header3]Access-Control-Expose-Headers: response header

CORS=HEADERS= Access-Control-Allow-Headers: response header

CORS=METHODS=method[,method2,method3]Access-Control-Allow-Methods: response header

CORS=ORIGIN=URL | * Access-Control-Allow-Origin: response header

WASD CORS Examples

1.

For a request containing

Request Processing Configuration 12–35

OPTIONS /resources/post-here/ HTTP/1.1
Host: bar.other
. . .
Origin: http://foo.example
Access-Control-Request-Method: POST
Access-Control-Request-Headers: X-PINGOTHER

with the mapping rules

SET /resources/post-here/* \
CORS=origin=* CORS=methods=POST,GET,OPTIONS \
CORS=headers=X-PINGOTHER CORS=age=3600

would produce a response

HTTP/1.1 200 OK
. . .
Content-Length: 0
Connection: Keep-Alive
Content-Type: text/plain
Access-Control-Allow-Origin: http://foo.example
Access-Control-Allow-Methods: POST, GET, OPTIONS
Access-Control-Allow-Headers: X-PINGOTHER
Access-Control-Max-Age: 3600

2.

For a request containing

GET /resources/credentials/ HTTP/1.1
Host: bar.other
. . .
Connection: keep-alive
Referer: http://foo.example/examples/credential.html
Origin: http://foo.example

with the mapping rules

SET /resources/credentials/* \
CORS=origin=http://foo.example CORS=credEntials=true

would produce a response

HTTP/1.1 200 OK
. . .
Content-Length: 106
Connection: Keep-Alive
Content-Type: text/plain
Access-Control-Allow-Origin: http://foo.example
Access-Control-Allow-Credentials: true
. . .

12–36 Request Processing Configuration

Chapter 13

Authorization Configuration (Basics)

WASD offers a comprehensive and versatile authentication and authorization environment.
A little too comprehensive, often leaving the new administrator wondering where to begin.
The role of this chapter is to provide a starting place, especially for sources of authentication,
along with some basic configurations. ‘‘WASD Web Services - Features and Facilities’’ contains
a detailed explanation of all aspects. All examples here assume a standard installation and
environment.

Just to clarify. Authentication is the verification of a user’s identity, usually through
username/password credentials. Authorization is allowing a certain action to be applied
to a particular path based on that identity.

Changes to the authorization configuration file can be validated at the command-line before
reload or restart. This detects and reports any syntactical and configuration errors but of
course cannot check the intent of the rules.

$ HTTPD /DO=AUTH=CHECK

If additional server startup qualifiers are required to enable specific authorization features
then these must also be provided when checking. For example:

$ HTTPD /DO=AUTH=CHECK /SYSUAF /PROFILE

A server’s currently loaded authorization rules may also be interrogated from the Server
Administration menu (see ‘‘WASD Web Services - Features and Facilities’’).

13.1 SYSUAF/Identifier Authentication
This setup allows any active account to authenticate using the local VMS username and
password. By default not every account may authenticate this way, only those holding
specified VMS rights identifiers. The examples provided in this section allows access to
the WASD online Server Administration facility, and so may be followed specifically for that
purpose, as well as serve as a general guide.

• Define the following logical before calling the server startup procedure. To make such
a definition permanent add it to the system or Web environment startup procedures.
This logical contains a startup qualifier that configures the server to allow authentication

Authorization Configuration (Basics) 13–1

from the SYSUAF, using VMS rights identifiers (‘‘WASD Web Services - Features and
Facilities’’ .

$ DEFINE /SYSTEM WASD_STARTUP_SERVER "/SYSUAF=ID"
$ @device:[WASD_ROOT.LOCAL]STARTUP.COM

After a change to a command-line qualifier of the server such as the above it needs to be
restarted using the following directive.

$ HTTPD/DO=RESTART

• Decide on an identifier name. This can be an existing identifier, or one created for the
purpose. For this example the identifier will be ‘‘WASD_WEBADMIN’’. Any identifier can
be created using actions similar to the following example.

$ SET DEFAULT SYS$SYSTEM
$ MCR AUTHORIZE
UAF> ADD /IDENTIFIER WASD_WEBADMIN

• Modify the authorization configuration file, accessed by the server using the system logical
WASD_CONFIG_AUTH, to contain the following. This allows full access to the online
Server Administration facility and [.LOCAL] directory (and no world access). Additional
paths may be added as required, and of course multiple identifiers may be created and
used for multiple realms and paths.

["Web Admin"=WASD_WEBADMIN=id]
/httpd/-/admin/* r+w
/wasd_root/local/* r+w

• The identifier must then be granted to those accounts allowed to authenticate in this way.

$ SET DEFAULT SYS$SYSTEM
$ MCR AUTHORIZE
UAF> GRANT /IDENTIFIER WASD_WEBADMIN SYSTEM

• Using this approach useful discrimination may be exercised. For instance, one identifier
for Web administrators, another (or others) for different authentication requirements.

["Web Admin"=WASD_WEBADMIN=id]
/wasd_root/local/* r+w
/httpd/-/admin/* r+w
["Area Access"=area-identifier-name=id]
/web/area/* r+w ; r

Of course the one account may hold multiple identifiers and so may have access to various
areas.

UAF> GRANT /IDENTIFIER WASD_WEBADMIN SYSTEM
UAF> GRANT /IDENTIFIER area-identifier-name SYSTEM

Using VMS rights identifiers allows significant granularity in providing access.

13–2 Authorization Configuration (Basics)

After Changes

If the WASD_CONFIG_AUTH configuration file is changed, or rights identifiers are granted
or revoked from accounts, the server should be directed to reload the file and purge any cached
authorization information.

$ HTTPD/DO=AUTH=LOAD
$ HTTPD/DO=AUTH=PURGE

13.2 Other Authentication
Other sources of authentication are available, either by themselves or used in the same
configuration file (different realms and paths) as those already discussed ‘‘WASD Web Services
- Features and Facilities’’ . Non-SYSUAF sources do not require any startup qualifier to be
enabled.

• ACME DOIs (Authentication and Credential Management Extension, Domains of Inter-
pretation) may be used to authenticate requests.

["Whatever you want to call it!"=doi=ACME]
/web/area/* r+w

• Simple lists contain usernames and unencrypted passwords. These are plain-text files,
created and modified using any desired editor.

["Whatever you want to call it!"=list-name=list]
/web/area/* r+w

This is a very simple arrangement, with little inherent security. Lists are more useful
when grouping names together for specifying which group may do what to where.

• HTA databases are WASD-specific, binary repositories of usernames, encrypted pass-
words, capabilities, user and other detail.

["Whatever you want to call it!"=HTA-database-name=HTA]
/web/area/* r+w

These databases may be administered using the online Server Administration facility (
‘‘WASD Web Services - Features and Facilities’’ or the HTAdmin command-line utility (
‘‘WASD Web Services - Features and Facilities’’ , are quite secure and versatile.

• External agents are authentication and authorization scripts executed on demand,
under the control-of but external to the server. It is possible for a site to write its own,
custom authorization agent.

["Whatever you want to call it!"=agent-name=agent]
/web/area/* r+w

Two variations on a versatile LDAP authenticator and a CEL-compatible authenticator,
along with example code is available in the WASD_ROOT:[SRC.AGENT] directory.

• X.509 establishes identity based on Public Key Infrastructure (PKI) authentication
certificates. This is only available for SSL transactions.

[X509]
/web/area/* r+w

Authorization Configuration (Basics) 13–3

• RFC1413 IETF document describes an identification protocol that can be used as a form
of authentication within this realm.

["Whatever you want to call it!"=RFC1413;A_PROJECT=list]
/web/area/* r+w ; r

13.3 Read and Write Groupings
WASD allows separate sources for groups of usernames to control read and write access in
a particular realm (‘‘WASD Web Services - Features and Facilities’’ . These groups may be
provided via simple lists, VMS identifiers, HTA databases and authorization agents. The
following example shows an identifier authenticated realm with full and read-only access
controlled by two simple lists. For the first path the world has no access, for the second
read-only access (with the read-only grouping becoming basically redundant information).

["Realm Name"=identifier_name=id;full_access_name=list;read-only_name=list]
/web/area/* r+w ;
/web/another-area/* r+w ; r

13.4 Considerations
Multiple authentication sources (realms) may be configured in the one WASD_CONFIG_
AUTH file.

Multiple paths may be mapped against a single authentication source.

Any path may be mapped only once (for any single virtual service).

Paths may have additional access restrictions placed on them, including client host name,
username, etc. (‘‘WASD Web Services - Features and Facilities’’ .

The configuration file is loaded and stored by the server at startup. If changed it must be
reloaded to take effect. This can be done manually using

$ HTTPD/DO=AUTH=LOAD

Authentication information is cached. Access subsequently removed or modified will not take
effect until the entry expires, or is manually purged using

$ HTTPD/DO=AUTH=PURGE

Failed attempts to authenticate against a particular source are limited. When this is exceeded
access is always denied. If this has happened the cache must be manually purged before a
user can successfully authenticate

$ HTTPD/DO=AUTH=PURGE

13–4 Authorization Configuration (Basics)

