OpenVMS USB Generic Driver

USB Generic Driver
Programmer’s Guide

Date: December 14, 2006

Abstract

This document provides afunctional description of aUSB generic device driver.

OpenVMS USB Generic Driver

Contents

1 O 3
A SSOCIATED DOCUMENTS. ...ttt ee st sesesesssssessssesesssssesesesesenssssssesssssssensssssnensssssnsnssssnens 3
CHANGE HISTORY ...ttt e b e b e b bbb bbb bbb bbb b b e b e b e b e bbb b e b e b et e bbbt ebenas 3

USB DEVICE STRUCTURE ..ot ssssess s ssessssssssssssssnssessssssssessssssesessesssnessens 4

DRIVER MODEL ...ttt ssssessssss s e sss s sesssesseessses e sssessssessssssssssssssnssssssesssnenssssssnessesssnessens 4
DRIVER A CTION ..ucuttteutertreeseresesseseesestesssessesesessssssessssssssessssssesssssssesenssssesensssnsessssssssesesssesessnsssnsessssssssesensssesessnsssnsensns 4
PQIO FUNCTIONS SUPPORTEDcocuiuirerieiereeseeseesessesseseesessssssesssssssessesssssssessessessssssssessssssssssssssesssssssnssssnssssees 5

OB READXBLEK ..ottt ettt tsetsee st s b bbb

108 WRITEXBLK.......covverrenees

|0$_SETMODE/CHAR
Enable Unplug notification AST ...
RS 0T = L= X o = g T TS
SEE PIPE SEALE ...ttt
Send a control request..........

|0$_SENSEMODE/CHAR
Get number of pipes.............
GEL PIPE NANUIES......eeeee et e st n s s s s b s e e s e s ans e nennsnsen
LT T 0= 1 =i 1 o) o PR
Get Pipetype
LT o <= L= PR
LT 0T 1 PR
G JEVICE UESCI IPLON ...ttt bbbt
GEL INLEITACE UESCIIPLO ... ettt s

CANCEL Ottt ettt b 12

ERROR HANDLING. ..ottt resess e sssss e sse e sesssesnesssssesseneas 12
EXAMPLE. ...t R s 13

USB DEVICE CONFIGURATION ..ot ssessssss e ssesessssssessasssssesssssessssessssssesssssesseneas 14

THE BASICS OF CONFIGURATION ...ccuuiuirerietsetsetseesessessessesessessesss st bt ssssesssssssesssssssssssssssssssssssssssssssessesssssssssns 14
Plugging in a new device
The Generic List.....ccccocvennne.

DEVICE CONfIQUIALIONoueurieeieeeeseeeeseesesessesessesesssse sttt ss et sessssssssnsens
INTERFACE CONfIQUIALION.....c.cuieiriieeiriesieeseeireesseie sttt es s es e 18
To use an example

PERMANENT DEVICES AND TENTATIVE DEVICES....ciirieriereeeeisesensesessessessessesessessssssssssssssessesssssssessessssssssssnees 25

Controlling Device Permanence and LOAGINGccvereriereerneeineiesiessieesssese s sessessssessssesssns 26

OpenVMS USB Generic Driver

Preface

This document describes the USB generic driver, SY SSUGDRIVER.EXE, which allows usersto
support USB devices such as scanners and smart card readers without having to write aUSB device driver.
Thisisanalogousto GKDRIVER for SCSI, which enables programmers to interface to SCSI devices without
having to write afull OpenVMS device driver.

Associated Documents
Universal Serial Bus Specification Revision 2.0

Change History

Date Issue # Description/Summary of Changes

January 6, 2005 x0.1 Initial version.

January 18, 2005 x0.2 Add ability to send control pipe request fix some typing
mistakes.

March 30, 2005 x0.3 Make changes corresponding to new code.

April 13, 2005 x04 Add some more corrections found while writing an example
program.

August 17, 2005 x05 Convert functional specification to draft programmers guide.

October 17, 2005 10 Add section on device configuration

November 30, 2005 11 More editing clean up and section on USB$ STALL errors

December 20, 2005 12 More comments added in.

December 14, 2006 13 Crank in some more minor corrections

OpenVMS USB Generic Driver

Introduction

This document describes the USB generic driver SY SBUGDRIVER whose device name is UGAX.
The generic driver alows users to support USB devicesthat are not part of the USB Human Interface Device
(HID). This document does not tell you how to support a specific device because devices vary greatly.
Rather, this document describes various capabilities of the generic driver and provides a simple example of
how to useit.

USB Device Structure

A USB device is usually made up of one or more interfaces, with each interface having one or more
possible configurations. Each interface consists of one or more communications paths called pipes. You
can think of apipe as behaving like avirtual circuit in anetwork.

One pipe, called the control pipe, is opened by default as part of identifying a device and matching
up adriver for the device. The control pipe is a bi-directional pipe; you send commands out over the pipe
and optionally receive data back.

Three other types of pipes are the interrupt, bulk, and isochronous pipes. OpenVMS currently
does not support isochronous pipes. The interrupt pipeis used to report an insertion and removal of a card.
Bulk input and bulk output pipes are used to move data on and off the card.

As part of configuring a device, the driver opens all the necessary pipes and sets the desired
configuration.

Driver Model

This section describes asimple fictional device and lists the steps an application takes to use the
generic USB driver to control the device. Thisfictional deviceisasmart card reader that does not conform
to the smart card device class. Thisreader has one interface that uses the vendor-specific class “sub class’
and protocol types of Oxff. It hasabulk-in pipe, abulk-out pipe, an interrupt pipe, and the required control
pipe. For now, assume that the steps necessary for the USB configuration to load adriver are complete.
(How device configuration works and how to obtain the information necessary for configuration are
discussed later.) So, with these assumptions, simply plug the deviceinto the system.

Driver Actions

At this point, the generic driver has opened all the pipes for the chosen interface and is waiting for
an application to assign a channel to it. The first channel assigned must be associated with the control pipe
before it can be used for anything else.

1. The application how associates a channel to the interrupt pipe, the bulk-in pipe, and the bulk-out
pipe.

2. The application next determines the type of pipe it has and other data about the device that it
needs by using the |O$_SETCHAR and I0$_SENSECHAR functions.

3. The application then issues a “read” to the interrupt to determine if a card is present in the reader.
If acard is present, the application uses the control pipe and the bulk in and bulk out pipes to
exchange data with the smart card.

OpenVMS USB Generic Driver

User Interface

$QIO functions supported

This section describes the $QI O function codes that this driver supports.

I0$_READXBLK

The driver treats read virtual, logical, and physical in the same way. Note that norma $QIO
processing rules for logical and physical block 1/0 still apply and are enforced by the $QIO dispatching
code. When aread is queued to a pipe, the driver checks to seeif thereis an outstanding 1/O for that pipe.
If oneisfound, the request is placed in the I/O queue of the pipe. If no 1/O is outstanding, the driver starts
the 1/0O queue for that pipe.

The driver treats parameters from the $QIO P1-P6 asfollows:

P1 Address of buffer in which to storeresults

P2 Size of buffer in bytes

P3 Flag USB$_SHORT_XFER_OK allowsfewer bytes than requested to complete the 1/0

P4 Pipe handle

Status return codes are the usual OpenVMS ones for I/O devices. Because USB device status
codes are alongword in length, after first checking the status word of the 1/0 status block, the application
must check the second longword of the 1/O status block. The second longword contains the USB status
code for the request. The status word in the IOSB can indicate success but have a USB error in the second
longword.

Xfer size bytes VMS Status

USB Status

I0$_WRITEXBLK

Thedriver treats write virtual, logical, and physical in the same way. Note that normal $QIO
processing rulesfor logical and physical block 1/0 still apply and are enforced by the $QI O dispatching
code.

When awriteis queued to a pipe, the driver checksto seeif there is an outstanding 1/0 for that pipe.
If oneisfound, the request is placed in the I/O queue of the pipe. If no I/O is outstanding, the driver starts
an 1/0 queue for that pipe.

The driver treats parameters from the $QIO P1-P6 as follows:

P1 Address of buffer from which to read date

OpenVMS USB Generic Driver

P2 Size of buffer in bytes

P3 Flag USB$ SHORT_XFER_OK alows fewer bytes than requested to complete the |/O

P4 Pipe handle

Status return codes are the usual OpenVMS ones for 1/O devices. Because USB device status
codes are alongword in length, after first checking the status word of the 1/0 status block, the application
must check the second longword of the /O status block. The second longword contains the USB status
code for the request. (The status word in the IOSB can indicate success but have a USB error in the second
longword.)

I0$_SETMODE/CHAR

Enable Unplug notification AST

Thisitem allows an application to associate an AST that is delivered if adeviceis unplugged. You
can use any channel to enable thisAST. HP recommends that you use the control channel for thisAST. To
cancel the AST, do not supply an AST routine address and parameter. (Do you use the same command that
you used beforeto enable it and omit the AST routine address and parameter?)

The driver treats parameters from the $QIO P1-P6 asfollows:

P1 AST routine address

P2 AST parameter

P3 | UGS ENABLE AST

P4 Access mode

Associate channel

Use this command to associate aVM S channel to a pipe and to break the association of a channel
to apipe.

The driver treats parameters from the $QIO P1-P6 as follows:

P1 Unused

P2 Unused

P3 UG$ ASSOCIATE associates a channel to a pipe; UG$ DISASSOCIATE breaks an
association

P4 Pipe handle

Set pipe state
Use this command to set the state of a pipe.

OpenVMS USB Generic Driver

The driver treats parametersfrom the $QIO P1-P6 asfollows:

Unused

Pipe state values are UG$_PIPE_STATE_ACTIVE, UG$ PIPE_STATE_STALED, and
UG$ PIPE_STATE_IDLE.

P3

UG$ SET_PIPE_STATE

P4

Pipe handle

Send a control request

Use this command to send a device request to the device control pipe. For more details about
device requests, see section 9.3 USB 1.1 or 2.0 specifications.. (Where does one get this document?)

Thedriver treats parameters from the $QIO P1-P6 asfollows:

P1

Address of setup data; see table below.

P2

Must be 8.

UGS$ DEVICE_REQUEST.

P4

Pipe handle.

&

Address of buffer to receive dataif there is a data phase.

Flag USB$ SHORT_XFER_OK allows fewer bytes than requested to compl ete the I/O.

The P1 buffer layout is shown below.

Offset

Feld Sze | Description

bmRequestType | 1 Characteristics of the request:

B7:

0 - Host to device
1 - Deviceto host

B6.5 TYPE

0 - Standard
1-Class

2 - Vendor
3 - Reserved

B4.0 Recipient

0- Device
1- Interface
2 - Endpoint
3 - Other

OpenVMS USB Generic Driver

4...31 - Reserved
1 bRequest 1 See Table 9-3in USB specification.
2 wVdue 2 Word sized field varies according to request.
4 windex 2 Word sized field varies according to request.
6 wlength 2 Number of bytesto transfer if there is adata phase.

I0$_SENSEMODE/CHAR

Get number of pipes

Use this command to obtain the number of pipes. Make thisthe first operation that an application
performsusing the driver. Use the channel for the control connection for this operation.

Thedriver treats parameters from the $QIO P1-P6 asfollows:

P1 Address of longword to store the number of pipes.

P2 Size of buffer in bytes must be 4.

P3 | UG$ GET PIPE COUNT

Get pipe handles

Use this command to obtain all the pipe handles. The buffer must have one quadword for each
pipe of the device.

The driver treats parameters from the $QIO P1-P6 asfollows:

P1 Address of buffer to hold pipe handles

P2 Size of buffer in bytes

P3 | UG$ GET PIPE HANDLES

Get Pipedirection
Use this command to obtain the direction of a pipe associated with its handle.

The driver treats parameters from the $QIO P1-P6 asfollows:

P1 Address of buffer to store pipe direction. Lega returns are USB$ XFER_OUT,
USB$XFER_IN, and USB$XFER_SETUP.

P2 Must be 4.

P3 | UGS GET PIPE TYPE

OpenVMS USB Generic Driver

P4 Pipe handle

Get Pipetype

Use this command to obtain the type of pipe associated with its handle.

The driver treats parameters from the $QIO P1-P6 as follows:

P1 Address of buffer to store pipetype. Typesare UG$ _PIPE_TYPE_CONTROL,
UG$ PIPE TYPE BULK, UG$ PIPE TYPE INTERRUPT,
UG$_PIPE_TYPE_ISOCHRONOUS (Thelast typeis currently not supported.)

P2 Must be 4.

P3 | UGS GET PIPE TYPE

P4 Pipe handle

Get pipe state

Use this command to obtain the state of the pipe.

The driver treats parameters from the $QIO P1-P6 asfollows:

P1 Address of buffer to hold the pipe state. Values of the pipe state are
UG$ PIPE_STATE ACTIVE, UG$ PIPE STATE_STALLED, UG$ PIPE STATE IDLE

P2 Must be 4

P3 | UG$ GET_PIPE STATE

P4 Pipe handle

Get pipesize

Use this command to obtain the size of the largest transfer on the pipe. (Thisisreally the largest
sizethat is sent on the busin onetransfer.) Actual requests can belarger. Thedriver takes care of splitting
the transfer up into appropriately sized bus transfers.

The driver treats parameters from the $QIO P1-P6 asfollows:

R

Address of buffer to hold pipe size

P2 Must be 4

P3 UG$ GET_PIPE_SIZE

P4 Pipe handle

Get device descriptor

OpenVMS USB Generic Driver

Use thisroutineis used to obtain the device descriptor from the device.

The driver treats parameters from the $QIO P1-P6 asfollows:

Pl Address of buffer to receive the device descriptor. The format of the buffer is shown

below.

P2 Size of buffer in bytes.

P3 | UG$ GET_DEVICE DESCRIPTOR

Format of the Device Descriptor

unsigned char

ug$b_blength

Descriptor length in bytes

unsigned char

ug$b_bdescriptortype

Descriptor type constant 0X01

unsigned short int

ug$w_bcdusb

BCD encoded specification release
number

unsigned char

ug$b_bdeviceclass

Device class code

unsigned char

ug$b_bdevicesubclass

Device sub class code

unsigned char

ug$b_bdeviceprotocol

Device protocol

unsigned char

ug$b_bmaxpacket

Maximum packet size for control pipe;
8, 16, 32, 64 are vdid.

unsigned short int

ug$w_idvendor

Vendor ID

unsigned short int

ug$w_idproduct

Product ID

unsigned short int

ug$w_bcddevice

BCD encoded device release number.

unsigned char

ug$b_imanufacturer

Index of string descriptor that
describes the manufacturer.

unsigned char

ug$b_iproduct

Index of string descriptor that
describes the product.

unsigned char

ug$b_iserailnumber

Index of string descriptor of device
serial number.

unsigned char

ug$b_bnumconfigurations

Number of possible device
configurations.

Get Interface descriptor

Use this command to obtain the interface descriptor from the device.

The driver treats parameters from the $QIO P1-P6 as follows:

10

OpenVMS USB Generic Driver

Address of buffer to receive the INTERFACE descriptor. The format of the buffer is

shown below.

Size of buffer in bytes

UG$ GET_INTERFACE DESCRIPTOR

11

OpenVMS USB Generic Driver

Format of Interface Desciptor

unsigned char ug$b_blength Descriptor length in bytes.

unsigned char ug$b_bdescriptortype Descriptor type constant 0X04.

unsigned char ug$b_binterfacenumber Zero-based count of thisinterface.

unsigned char ug$b_balternatesetting Used to select alternate settingfor the
interface.

unsigned char ug$b_bnumendpoints Number of endpointsfor the interface.

unsigned char ug$b_binterfaceclass Interface class code.

unsigned char ug$b_binterfacesubclass | Interface sub class code.

unsigned char ug$b_binterfaceprotocol Interface protocol.

unsigned char ug$b_iinterface Index of string descriptor that
describes thisinterface.

Cancel I/O

When you issue a cancel on a channel, the driver checks the 1/0 queue of the channel, flushes any
queued requests, and returns them with a status of SS$ CANCEL. Any pending I/O to the pipe is aborted
using the USB abort pipe code. In that situation, the status in the I/O status block is SS$ ABORT, and the
second longword has the status that is returned from the aborted I/O.

If you deassign a channel, the association between the channel number and the pipe is broken.
Deassigning the channel does not close the pipe. The pipes are closed only when the device is unplugged.
Therefore, you can reuse a device without unplugging it from the system and plugging it back in.

Error Handling

It isimpossible to tell you how to deal with most errors that you will encounter while developing
code to support your device. There is one common error that you are likely to encounter when getting
started that isUSB$_STALL. That isthe common way for USB devices to indicate, that the command they
just received isinvalid. Unfortunately, is also possible to receive this in normal operation if the device is
simply too busy to acknowledge the request.

12

OpenVMS USB Generic Driver

Example

An example program is in SYS$SCOMMON:[SYSHLP.EXAMPLESUSB],: ug examplec. This
program isintended as a simple example of how to use the UG driver to control aUSB device. Inthiscase, it
loops two PL2303 USB to RS232 controllers and exchanges data. Note that this example does not exercise al
the capabilities of the UG driver nor does it work on all PL2303-based controllers. Some PL230- based
controllersrequire additional setup, which is not shown in this example.

To compile the example, copy the programs ug examplec and ugdef.h from
sys$common:[syshlp.examples.usb] to alocal directory where you have write access. Then simply compile
and link them; no special switches are needed. To run the program, you must add both PL 2303 devices into
the system. To do this, follow the stepsin the "USB Device Configuration™ section.

The example program follows stepsthat are the usual ones for any device you want to control.
1. Assignachannel tothe device or devices.
2. Find out how many pipes the device has.

3. Make sure you are communicating with the correct device. The program does this by reading
the device descriptor and checking it against what it expectsto find.

4. Associate aVMS channel to a pipe and obtain the pipe type and direction.
5. Perform any device-specific setup that is required.

6. Exchange datawith the device.

13

OpenVMS USB Generic Driver

USB Device Configuration

USB device configuration is as simple as adding some text linesto SY SSUSER_CONFIG.DAT; itis
also simpleto do wrong.

Y ou perform USB configuration with the same files that you use to configure device controllers for
OpenVMS: SY S$CONFIG.DAT and SYSSUSER_CONFIG.DAT. Both files are located in the SY S3SY STEM:
directory. As you might expect, user-written drivers add their configuration records to
SYS$SUSER_CONFIG.DAT; OpenVMS does not modify the contents — even across O/S upgrades.

The contents of the files are evaluated: SYSPUSER_CONFIG.DAT is evaluated first, and
SYS$CONFIG.DAT second, alowing a user-written configuration record to supersede a system-supplied
record.

USB isdifferent from normal OpenVMS device configuration in several respects:

The devices are not classic bus-based controllers, but, rather, devices connected to a peripheral
bus.

Simple vendor/device identification matching, which is performed for other buses, is not sufficient
to determine which driver to load for a USB device.

USB devicedrivers are part of alarger “stack” of drivers; the controller port driver, the HUB driver,
or the HID driver are involved in aspects of configuration and operation of the device. A USB
device driver is a pseudo-driver in the sense that it does not directly talk to the device, but passes
messages to other drivers that can talk to the USB bus and send messages to and receive
messages from USB devices.

The USB protocol was developed to allow device-to-driver matching to be done on multiple levels,
depending on the type of device and the needs of the driver.

Device discovery is asynchronous on the USB bus, and it is not feasible to poll the bus to find
devices. Instead, devices are configured in response to an event from a HUB device indicating
that it has a new device to report. HUBs are both external devices that provide additional slots,
and aRoot HUB is built onto the controller to which the initial UCB connections are attached.

You can attach and remove devices at will, even at runtime. which requires USB drivers to be
loaded on the fly as well as made offline on the fly.

The UGDRIVER isthe basis of a“generic” driver. Itisthefunctiona equivalent of the SCSI GKDRIVER
for USB devices; it implements simple logic that takes care of USB housekeeping and allows a user to read
and write raw data packets to the USB device.

The next section describes how to (configure UGDRIVER to a specific device or a specific class of
devices), and how to make sure that UGDRIVER does not interfere with the configuration of other devices
and their drivers.

The Basics of Configuration

USB devices include the device itself and one or more Interfaces. Most devices present a single
interface. An interface can be serviced by a single driver, or by multiple drivers. A single driver can also
service multiple interfaces. This might sound complex, and it is. However, for the typical USB device, there
isonly oneinterface.

14

OpenVMS USB Generic Driver

When a new device is discovered by aHUB, the HUB driver collects information about the device
and sends a message to the USB Configuration Manager (UCM), which is a background process that
hibernates, waiting to service configuration events. UCM isthe code that knows how to perform device-to -
driver matching and how to load device drivers. UCM also maintains an on-disk database of device-to-
driver mappings that it previously performed and made permanent (persistent). This database allows a
device always to obtain the same OpenVMS device name each time it is plugged in.

Plugging in a new device

The HUB driver collects information about the device and its interfaces, and then requests UCM to
attempt to configure and load adevice driver for it. The HUB driver does thisin multiple steps:

First it tries to configure the device as a “DEVICE,” the simplest type of configuration; it ignores
the interface information. Devices can be identified by vendor_id, product_id, revision,
device class, device subclass, and device protocol.

If adriver is not successfully configured, then the HUB driver asks UCM to try to configure the
device as an “INTERFACE” -- for each interface the device presents (which is usually only one).
Interfaces are identified by vendor_id, product_id, revision, interface class, interface _subclass,
and interface _protocol. The vendor and product ID codes and revision value are inherited from
the device.

Note: This discussion leaves out Human Interface Devices. These devices involve interaction with a
Human,-- such as a mouse, keyboard, joystick, simulator, tablet, or game pad — and are handled by a
special HID driver. HID devices are identified by a two-byte value of Usage Page and Usage Type; these
values are combined into a 16-bit value “ TAG,” and device- driver matching is performed by searching
for a matching TAG value. The UG driver can be used to talk to a HID device, but it cannot be loaded
using the HID Usage Page/Type values. A second generic HID driver isneeded for that purpose.

The Generic List

UCM now has the device information it needs to match to a device driver. To do this matching, it
examines the Generic list. It has created this list by reading the SYS$USER_CONFIG.DAT file and the
SYS$CONFIG.DAT file, searching for records that contain a private section with a USB_CONFIG_TYPE
record.

The records in the file are simple; each record starts with a DEVICE keyword and ends with an
END_DEVICE keyword. USB records are pseudo-devicesin the sense that they provide no ADAPTER type
and do not have a conventional device ID. Instead, using the BEGIN_PRIVATE and END_PRIVATE
construct, they provide USB-specific information. Within this private data area, each line starts with a USB
keyword.

USB keywords arein the following table.

Keyword Description
USB_CONFIG TYPE TellsUCM how the driver isto be configured —asa DEVICE,
INTERFACE or TAG method.
USB _CLASS DRIVER Used for specialized driversthat are class driversfor other USB drivers

such asthe HID driver. You do not need to useit. Thevauesare
SINGLE INSTANCE and MULTIPLE INSTANCE

VENDOR 1D Vendor ID

PRODUCT_ID Product ID

15

OpenVMS USB Generic Driver

RELEASE NUMBER Revision number

DEVICE CLASS The device class code

DEVICE SUB CLASS Device subclass

DEVICE PROTOCOL Device Protocol

NUMBER OF INTERFACES The number of interfaces the device presents

BEGIN INTERFACE Starts an interface definition. (There can be multiple interface definitions.)

INTERFACE CLASS Interface class

INTERFACE SUB CLASS Interface subclass

INTERFACE_PROTOCOL Interface protocol

END INTERFACE Ends an interface definition

HID USAGE DATA The Usage Page/Type TAG for HID devices

USAGE_TAG An aternate TAG type used by HID-like driversfor performing TAG
lookups -- for example, the EDGEPORT Serial Multiplexer uses this.

USB LOGGING Used to enable some extralogging (not available to normal drivers — used
by CLASS drivers)

In addition, the standard DEVICE and DRIVER keywords must be included outside the
BEGIN_PRIVATE and END_PRIVATE section, telling UCM the device name and driver name to use for the
device.

UCM parses this data into a data structure and creates an in-memory Generic list of all the USB devices
that are in the files. The queue is in the same order as the devices appear in the file, and the
SYS$SUSER_CONFIG.DAT records come before the SY SBCONFIG.DAT records.

The datain thislist is used to match against the configuration request that the HUB driver makes. The
matching processis quite complex.

DEVICE Configuration

In DEVICE configuration, the HUB driver asks UCM to configure the device by DEVICE, not by
INTERFACE or TAG.

In general, drivers do not use DEVICE configuration; rather, they use INTERFACE
configuration. The most common use of DEVICE configuration isto load special device classes such as
HUB devices. For a general driver, the only practical use of DEVICE configuration is to force the
loading of a specific device driver, regardless of any other configuration records that might otherwise
match.

The match logic for a device that has not been connected to the system before is not a simple
comparison of all the fields in search of a match. The reason is that you a driver (and its configuration
record) can match a variety of devices; this is a generic driver. Alternatively, you might have a vendor-
specific driver.

The driver class code can be 0-255, and 255 can have special meanings: if the device code is zero,
the device presents has no device class, no subclass, and no protocol; all of these fields are zero. If the
classis 255 (OxFF), the protocol is vendor-specific and must match the vendor ID.

A set of tests determines whether a generic record matches the configuration request. Thetests are not
all equal: a“priority” isassigned to each test. All the generic records are scanned. A record that matchesis
compared against the previous match; if the new match has a greater priority, it isused. If no records have
matched, azero is used. This matching means that:

16

Higher priority matches win over lower ones.
Duplicate matches of the same priority ignore subsequent matches.

OpenVMS USB Generic Driver

In this manner, records are created sothat drivers are selected from more specific to less specific. The
following testsarein order of priority -- from best match to worst match. When only afield isincluded, both
the configuration request and the generic list entry field must match. When a generic field must be 0
(because omitting the field in the device record in the file setsit to zero), the request field isignored.

Match 1:

Vendor ID
Product ID
Release Number
Device Class
Device Subclass
Device Protocol

Match 2

Vendor ID

Product ID

Release Number

Device Class

Device Subclass

Generic Device Protocol must be 0

Match 3:

Vendor ID

Product ID

Release Number

Generic Device Class must be zero

Match 4:

Vendor ID

Product ID

Generic Record Release Number must be 0
Generic Device Class must be zero

17

OpenVMS USB Generic Driver

Match 5:

Generic Vendor ID must be 0
Generic Product ID must be 0
Generic Release Number must be 0
Device Class (not 255)

Device Subclass

Device Protocol

Match 6:

Generic Vendor ID must be 0
Generic Product ID must be 0
Generic Release Number must be 0
Device Class (not 255)

Device Subclass

The matching tests show that an entry that is fully qualified always matches before amore generic one.

Note that there is no explicit testing for a Device Class of 0 because the standard requires that devices
with a class field of zero have the subclass and protocol set to zero. The preceding tests handle classes of
zero correctly.

All tests in which the device class cannot be 255 require that the generic record contain no vendor
ID (and, by implication, no product ID and no Release Number). This allows the HUB record, for example,
which has no vendor or product I1Ds, to match against all devices with a class code of 9. However, a user
record that provides only the vendor and product 1Ds claims a device with a class code of 9 over the generic
HUB record.

The tests might be tuned to provide a finer granularity, but, in general, the current tests provide al
the control auser might need for configuring adevice.

INTERFACE Configuration

An interface configuration means that the HUB driver asks UCM to configure the device by
INTERFACE -- not by DEVICE or TAG.

The match logic for a device interface that has not been connected to the system before is not
simply a comparison of al the fields looking for a match. This is because you can have an interface driver
(and a configuration record for it) that can match avariety of devices; thisis ageneric driver??????. On the
other hand, you might have avery vendor-specific driver.

The interface class code can be 0 through 255.. The value 255 has a special meaning: if the classis
255 (OxFF), the interface is vendor-specific and must match the vendor ID.

A set of tests determines if a generic record matches the configuration request. The tests are not all
equal —a“priority” isassigned to each test, and all the generic records are scanned. A record that matches
is compared against the previous match (or against zero if no matches are found). If the new match has a
greater priority, it isused. This matching meansthat:

Higher priority matches win over lower ones.
Duplicate matches of the same priority ignore subsequent matches.

18

OpenVMS USB Generic Driver

In this manner of matching, records can be created sothat drivers are selected from more specific toless
specific. Thefollowing testsarein order of priority -- from best match to worst match. When only onefield
is given, both the configuration request and the generic list entry field must match. When a generic field
must be 0 (because omitting the field in the device record in the file sets it to zero), the request field is
ignored.

Match 1:

Vendor ID
Product ID
Interface Class
Interface Subclass
Interface Protocol

Match 2

Vendor ID

Product ID

Interface Class

Interface Subclass

Generic Interface Protocol must be 0

Match 3:

Vendor ID

Interface Class must be 255
Interface Subclass

Interface Protocol

Match 4:

Vendor ID

Interface Class must be 255
Interface Subclass

Generic Interface Protocol must be 0

Match 5:

Generic Vendor ID must be 0
Interface Class must not be 255
Interface Subclass

Interface Protocol

Match 6:
Generic Vendor ID must be 0
Interface Class must not be 255

Interface Subclass

Just as in device matching, the order is from strongest match to weakest match, from more specific to
less specific, from vendor-specific to generic.

19

OpenVMS USB Generic Driver

Tousean example...

Y ou might find an inexpensive tablet on the internet and want to write adriver for it. Thefirst thing
you need to do to configure the device isto obtain its device information. Therefore, you must plugitin.

Using the UCM command SHOW EVENT, you can look at events on the USB bus.

UCM> show event/si nce=t oday
Dat e Ti me Type Priority Conmponent

15- OCT- 2005 13:23:14.54 DRI VER NORMAL HUBDRI VER
Message: Configured device UCMD using driver SYS$HUBDRI VER:

15- OCT- 2005 13:23:16.83 DRI VER NORMAL HUBDRI VER
Message: Configured device UCMD using driver SYS$HUBDRI VER:

15- OCT- 2005 13: 25:05. 27 DRI VER NORMAL HUBDRI VER
Message: Configured device HI DO using driver SYS$MOUDRI VER:

ucw>

This example shows the events from today. The first two are HUB devices; the last event,
however, isyour device. To obtain more information, ask for INFORMATIONAL events:

UCM> sho event/since=today/priority=informational
Dat e Ti me Type Priority Conmponent
15- OCT- 2005 13:23:14.52 DRI VER | NFORMATI ONAL HUBDRI VER
Message: Find a driver for DeviceCl ass/ Devi ceSubCl ass = 0x9/ 0x0

15- OCT- 2005 13:23:14.52 DRI VER | NFORMATI ONAL HUBDRI VER

Message: Find a driver for DeviceCl ass/ Devi ceSubCl ass 0x9/ 0x0

15- OCT- 2005 13:23: 14. 54 UNKNOWN | NFORMATI ONAL UCM DEVI CE UCMD
Message: VENDOR_ID = 4113

PRODUCT_ID = 0
RELEASE_NUMBER
BUS_NUMBER = 0
PATH = 0.0.0.0.0.0
DEVI CE_CLASS = 9
DEVI CE_SUB_CLASS = 0
DEVI CE_PROTOCOL = 0
NUMBER_OF_| NTERFACES = 1
NUMBER_OF _CONFI GURATIONS = 1
CONFI GURATI ON_NUMBER = 0.

1l
o

15- OCT- 2005 13:23:14.54 UCM | NFORMATI ONAL SYS$HUBDRI VER. EXE
Message: Loaded single instance class driver for UCM.

15- OCT- 2005 13:23:14.77 DRI VER | NFORMATI ONAL HUBDRI VER
Message: Find a driver for DeviceCl ass/ Devi ceSubCl ass = 0x9/ 0x0

15- OCT- 2005 13:23:16. 83 UNKNOWN | NFORMATI ONAL UCM DEVI CE UCMD
Message: VENDOR | D = 1033
PRODUCT I D = 89
RELEASE_NUMBER = 256
BUS_NUMBER = 1
PATH = 1.0.0.
DEVI CE_CLASS

no
e
o

20

OpenVMS USB Generic Driver

DEVI CE_SUB_CLASS = 0

DEVI CE_PROTOCOL = 0
NUMBER_OF | NTERFACES = 1
NUMBER_OF _CONFI GURATI ONS = 1
CONFI GURATI ON_NUMBER = 0.

15- OCT- 2005 13:23:16.83 UCM | NFORMATI ONAL SYS$HUBDRI VER. EXE
Message: Loaded single instance class driver for UCM.

15- OCT- 2005 13: 25: 04. 94 DRI VER | NFORMATI ONAL HUBDRI VER
Message: Find a driver for DeviceCl ass/ Devi ceSubCl ass = 0x0/ 0x0

15- OCT- 2005 13:25:04.94 DRI VER | NFORMATI ONAL HUBDRI VER
Message: Find a driver for InterfaceCl ass/|InterfaceSubClass/Protocol = 0
x3/ 0x0/ 0x0

15- OCT- 2005 13:25:04.99 UNKNOWN I NFORMATI ONAL UCM DEVI CE HI DO
Message: VENDOR_ID = 2250
PRODUCT_I D = 16
RELEASE_NUMBER = 261
BUS_NUMBER = 1
PATH = 1.2.0.0.0.
DEVI CE_CLASS = 0
DEVI CE_SUB_CLASS = 0
DEVI CE_PROTOCOL = 0
NUMBER_OF_| NTERFACES = 1
CONFI GURATI ON_VALUE = 1
| NTERFACE_NUMBER = 0
I NTERFACE_PROTOCOL = 0
| NTERFACE_CLASS = 3
| NTERFACE_SUB_CLASS = 0
NUMBER_OF_CONFI GURATI ONS = 1
MANUFACTURER_STRI NG = Al PTEK | nternational Inc.
PRODUCT_STRI NG = USB Tabl et Series Version 1.05
CONFI GURATI ON_NUMBER = 0
CURRENT_| NTERFACE = 0.

0

15- OCT- 2005 13: 25:04.99 UCM | NFORMATI ONAL SYS$HI DDRI VER. EXE
Message: Loaded single instance class driver for HI DO.

15- OCT- 2005 13:25:05.00 DRI VER | NFORMATI ONAL HI DDRI VER
Message: Find a driver for usage page 0001 usage type 0002

15- OCT- 2005 13: 25: 05. 27 UNKNOWN | NFORMATI ONAL UCM DEVI CE MOU
Message: BUS_NUMBER = 1
PATH = 1.2.0.0.0.0. H D_USAGE_DATA = 65538.

ucm>

This display provides more information. The last section is the one that shows the device, which
uses an Interface Class of 3, the classthat causes the Human Interface Driver (HID) to claimiit.

Y ou might wonder how you should configure your driver (UGDRIVER). Assume that you want to
handle only this device (because the generic Interface driver for this class is HID) and currently no way
existsto provide user-written HID drivers.

Edit SY SBUSER_CONFIG.DAT to add the following record:

device = "Cyber Tabl et 12000"
name = UG

21

OpenVMS USB Generic Driver

driver = sys$ugdriver
begi n_private
usb_config_type = interface
vendor _id = 2250
product _id = 16

begi n_interface
interface_class = 3
interface_sub_class = 0
interface_protocol =0
end_interface
end_private

end_devi ce

This new record indicatesthat if adevice has the vendor code of 2250, and product ID of 16, and
Interface Class of 3, and Protocol and Subclass of 0, load the UGDRIVER and call the device UG.

All of these numbers came from the event information. Y ou need to include a vendor and product
code because you do not want other devices, such as a generic mouse or some other vendor’ s tablet, to use
your driver.

You then need to reload the database for UCM. You can do this by using the RELOAD or
RESTART command. The difference between the two commandsisthat a RESTART besidesreading in new
configuration data also removes any in-memory structures that might have been built by earlier device
events.

In this case, you create aMOUO (USB MOUSE) device, which means that you do not have to do
anything special because MOUOQ, by default, is never saved as a permanent device (see the description of
permanent devices). To reduce the amount of information in the event file, you also need to reset it. Then
you unplug the device and plug it back in. For example:

$ uC™m
Uni versal Serial Bus Configuration Manager, Version V1.0
UCM> restart
Restart UCM Server? [N]: y
Waiting for UCM Server image to exit....
Waiting for UCM Server inmage to restart...
%USB- S- SRVRRESTART, Identification of new UCM Server is 0000021E
UCM> set | og/ new
UCM> show event
Dat e Ti me Type Priority Conmponent
15- OCT- 2005 13:47:13. 58 DECONFI GURED NORMAL HUBDRI VER
Message: Deconfiguring device on bus 1 at port 2 bus tier 2 usb address 3

15- OCT- 2005 13:47:14.76 UCM NORMAL SYS$UGDRI VER. EXE
Message: Tentative device UGAO proposed... auto-loading driver.
15- OCT- 2005 13:47:14.78 UCM NORMAL UGA

Message: Auto-perm converting tentative device UGAO i nto permanent device

15- OCT- 2005 13:47:14.88 DRI VER NORMAL HUBDRI VER
Message: Configured device UGAO using driver SYS$UGDRI VER

ucw>

The messages indicate that the device was loaded.

22

OpenVMS USB Generic Driver

If you display INFORMATIONAL data, you see the following additional information:

UCM> show event/priority=all
Dat e Ti me Type Priority Conponent
15- OCT- 2005 13:47:13.58 DECONFI GURED NORMAL HUBDRI VER
Message: Deconfiguring device on bus 1 at port 2 bus tier 2 usb address 3

15- OCT- 2005 13:47:14.71 DRI VER | NFORMATI ONAL HUBDRI VER
Message: Find a driver for DeviceCl ass/ Devi ceSubCl ass = 0x0/ 0x0

15- OCT- 2005 13:47:14.71 DRI VER | NFORMATI ONAL HUBDRI VER
Message: Find a driver for InterfaceClass/InterfaceSubClass/Protocol =
0x3/ 0x0/ 0x0

15- OCT- 2005 13:47:14.76 UNKNOWN | NFORMATI ONAL UCM DEVI CE UGA
Message: VENDOR_ID = 2250
PRODUCT_ID = 16
RELEASE_NUMBER = 261
BUS_NUMBER = 1
PATH = 1.2.0.0.0.0
DEVI CE_CLASS = 0
DEVI CE_SUB_CLASS = 0
DEVI CE_PROTOCOL = 0
NUMBER_OF_| NTERFACES = 1
CONFI GURATI ON_VALUE = 1
| NTERFACE_NUMBER = 0
| NTERFACE_PROTOCOL =
| NTERFACE_CLASS = 3
| NTERFACE_SUB_CLASS = 0
NUMBER_OF_CONFI GURATI ONS = 1
MANUFACTURER_STRI NG = Al PTEK I nternational |nc.
PRODUCT_STRI NG = USB Tabl et Series Version 1.05
CONFI GURATI ON_NUMBER = 0
CURRENT_I NTERFACE = 0.

0

15- OCT- 2005 13:47:14.76 UCM NORMAL SYS$UGDRI VER. EXE
Message: Tentative device UGAO proposed... auto-loading driver.
15- OCT- 2005 13:47:14.78 UCM NORMAL UGA

Message: Auto-perm converting tentative device UGAO i nto permanent device.

15- OCT- 2005 13:47:14.88 DRI VER NORMAL HUBDRI VER
Message: Configured device UGAO using driver SYS$UGDRI VER:

ucm>

The important part of the device configuration is that it does not interfere with other devices with
the same interface class: for example, the joystick also uses class 3, subclass 0, and protocol 0. However, if
you plug in ajoystick, it correctly uses the HID driver, which uses the generic match for Interface Class 3 to
load the joystick driver (AGDRIVER), as shown in the following example:

UCM> show event/priority=all
Dat e Ti me Type Priority Conponent

23

OpenVMS USB Generic Driver

15- OCT- 2005 13:47:13.58 DECONFI GURED NORMAL HUBDRI VER
Message: Deconfiguring device on bus 1 at port 2 bus tier 2 usb address 3

15- OCT- 2005 13:47:14.71 DRI VER | NFORMATI ONAL HUBDRI VER
Message: Find a driver for DeviceCl ass/ Devi ceSubCl ass = 0x0/ 0x0

15- OCT- 2005 13:47:14.71 DRI VER | NFORMATI ONAL HUBDRI VER
Message: Find a driver for InterfaceClass/InterfaceSubClass/Protocol =
0x3/ 0x0/ 0x0

15- OCT- 2005 13:47:14.76 UNKNOWN I NFORMATI ONAL UCM DEVI CE UGA
Message: VENDOR_ID = 2250
PRODUCT_I D = 16
RELEASE_NUMBER = 261
BUS_NUMBER = 1
PATH = 1.2.0.0.0.
DEVI CE_CLASS = 0
DEVI CE_SUB_CLASS = 0
DEVI CE_PROTOCOL = 0
NUMBER_OF | NTERFACES = 1
CONFI GURATI ON_VALUE = 1
| NTERFACE_NUMBER = 0
| NTERFACE_PROTOCOL = 0
| NTERFACE_CLASS = 3
| NTERFACE_SUB_CLASS = 0
NUMBER_OF_CONFI GURATI ONS = 1
MANUFACTURER_STRI NG = Al PTEK | nternational Inc.
PRODUCT_STRI NG = USB Tabl et Series Version 1.05
CONFI GURATI ON_NUMBER = 0
CURRENT_| NTERFACE = 0.

0

15- OCT- 2005 13:47:14.76 UCM NORMAL SYS$UGDRI VER. EXE
Message: Tentative device UGAO proposed... auto-loading driver.
15- OCT- 2005 13:47:14.78 UCM NORMAL UGA

Message: Auto-perm converting tentative device UGAO into pernmanent device.

15- OCT- 2005 13:47:14.88 DRI VER NORMAL HUBDRI VER
Message: Configured device UGAO using driver SYS$UGDRI VER:

15- OCT- 2005 14: 16: 46. 55 DECONFI GURED NORMAL HUBDRI VER
Message: Deconfiguring device on bus 1 at port 2 bus tier 2 usb address 3

15- OCT- 2005 14:16:49. 46 DRI VER | NFORMATI ONAL HUBDRI VER
Message: Find a driver for DeviceCl ass/ Devi ceSubCl ass = 0x0/ 0x0

15- OCT- 2005 14:16:49. 46 DRI VER | NFORMATI ONAL HUBDRI VER
Message: Find a driver for InterfaceClass/InterfaceSubClass/Protocol =
0x3/ 0x0/ 0x0

15- OCT- 2005 14:16:49. 49 UNKNOWN | NFORMATI ONAL UCM DEVI CE HI DO
Message: VENDOR_ID = 1699
PRODUCT_I D = 13630
RELEASE_NUMBER = 256
BUS_NUMBER = 1
PATH = 1.2.0.0.0.0
DEVI CE_CLASS = 0
DEVI CE_SUB_CLASS = 0
DEVI CE_PROTOCOL = 0
NUMBER_OF | NTERFACES = 1

24

OpenVMS USB Generic Driver

CONFI GURATI ON_VALUE = 1

| NTERFACE_NUMBER = 0

| NTERFACE_PROTOCOL = 0

| NTERFACE_CLASS = 3

| NTERFACE_SUB_CLASS = 0

NUMBER_OF _CONFI GURATIONS = 1
MANUFACTURER_STRI NG = Sai t ek
PRODUCT_STRI NG = Cyborg evo Wrel ess
CONFI GURATI ON_NUMBER = 0

CURRENT_| NTERFACE = 0.

15- OCT- 2005 14:16:49. 49 UCM | NFORMATI ONAL SYS$HI DDRI VER. EXE
Message: Loaded single instance class driver for HI DO.

15- OCT- 2005 14:16:49. 50 DRI VER | NFORMATI ONAL HI DDRI VER
Message: Find a driver for usage page 0001 usage type 0005

15- OCT- 2005 14:16:49. 63 UNKNOWN I NFORMATI ONAL UCM DEVI CE AGA
Message: BUS_NUMBER = 1
PATH = 1.2.0.0.0.0. H D_USAGE_DATA = 65541.

15- OCT- 2005 14:16:49.63 UCM NORMAL SYS$AGDRI VER. EXE
Message: Tentative device AGAO proposed... auto-loading driver.
15- OCT- 2005 14:16:49.65 UCM NORMAL AGA

Message: Auto-perm converting tentative device AGAO into permanent device.

15- OCT- 2005 14:16:49. 78 DRI VER NORMAL HUBDRI VER
Message: Configured device HI DO using driver SYS$AGDRI VERR:

ucm>

Y ou might be puzzled about the message saying the device istentative and will be converted into a
permanent device. The following section explainsthis.

Permanent Devices and Tentative Devices

USB devices have OpenVM S device hames assigned to them when they are configured. However,
if you plug in multiple devices of the same type, in adifferent order or in different places, they all might have
different names. Worse still, the USB bus discovery is asynchronous, and between each boot, the order of
device discovery might be different.

It is not advisable for two printers, for example, to change names randomly when the system is
booted.

The UCM tries to ensure that names are persistent (permanent) across boots and across hot-plugs.
UCM uses two strategiesto do this:

Serial Number. If a device has a serial number, it must be unique -- at least the vendor/product
code part must be.

Path. The USB bus is a hierarchical topology. Each device can be described by the level (HUB
level) and port within the HUB. A pathisasix- digit valuethat issimilar to 1.2.0.0.0.0.

When a device is configured, UCM looks in a database of PERMANENT devices to determine if this
device has been seen before. If it has not, the device is configured (as described above), and the complete

25

OpenVMS USB Generic Driver

information about the device is stored in the permanent database, including the OpenVMS name that was
used for it.

In general, the matching of devices in the permanent database is not a heuristic; it is, rather, an exact
match.

The exception to thisisTEMPLATE devices. Currently, there are only two —the Mouse and Keyboard.
These devices have pre-allocated entries in the permanent database. A flag tells UCM that if a Mouse or
Keyboard is plugged in always to create MOUO and KBDO, no matter where they are plugged in. Mice and
Keyboards do not have serial numbers, and it would not be user-friendly to create MOU1 instead of MOUO
just because someone plugged the connectorsinto adifferent USB slot. In reality, however, this dates from
a time when making devices permanent and configuring and loading the OpenVMS device was a manual
process.

Controlling Device Per manence and L oading

You can use the UCM commands SET AUTO and SHOW AUTO to restrict the automatic
recognition of new devices. This can be useful when debugging your USB device or debugging its
configuration. For example:

$ UCM SET AUTO ENABLE=(LOAD) / DI SABLE=(PERM)

This command allows the device to be loaded but does not save it in the permanent (on disk)
database.

$UCM SET AUTQ DI SABLE

This command disables automatic loading of the device. Instead, the deviceis made “ Tentative” —
that is, UCM knows that the device is there and what driver to load but requires the UCM command ADD
DEVICE to cause it to be made permanent. In addition, the device must then be hot-swapped (unplugged
and plugged back in again).

Thedefault isSET AUTQ ENABLE, which enables auto-load and auto-perm. The SHOW AUTO
command displays the current settings.

In addition, you can set EXCLUDE and INCLUDE lists. Seethe UCM section of the HP OpenVMS
System Management Utilities Manual for more information.

26

